A carrier is a transmembrane protein that moves molecules across the membrane through

In facilitated transport, or facilitated diffusion, materials diffuse across the plasma membrane with the help of membrane proteins. A concentration gradient exists that would allow these materials to diffuse into the cell without expending cellular energy. However, these materials are polar molecule ions that the cell membrane's hydrophobic parts repel. Facilitated transport proteins shield these materials from the membrane's repulsive force, allowing them to diffuse into the cell.

The transported material first attaches to protein or glycoprotein receptors on the plasma membrane's exterior surface. This allows removal of material from the extracellular fluid that the cell needs. The substances then pass to specific integral proteins that facilitate their passage. Some of these integral proteins are collections of beta-pleated sheets that form a pore or channel through the phospholipid bilayer. Others are carrier proteins which bind with the substance and aid its diffusion through the membrane.

Channels

The integral proteins involved in facilitated transport are transport proteins, and they function as either channels for the material or carriers. In both cases, they are transmembrane proteins. Channels are specific for the transported substance. Channel proteins have hydrophilic domains exposed to the intracellular and extracellular fluids. In addition, they have a hydrophilic channel through their core that provides a hydrated opening through the membrane layers (Figure). Passage through the channel allows polar compounds to avoid the plasma membrane's nonpolar central layer that would otherwise slow or prevent their entry into the cell. Aquaporins are channel proteins that allow water to pass through the membrane at a very high rate.

A carrier is a transmembrane protein that moves molecules across the membrane through
Facilitated transport moves substances down their concentration gradients. They may cross the plasma membrane with the aid of channel proteins. (credit: modification of work by Mariana Ruiz Villareal)

Channel proteins are either open at all times or they are “gated,” which controls the channel's opening. When a particular ion attaches to the channel protein it may control the opening, or other mechanisms or substances may be involved. In some tissues, sodium and chloride ions pass freely through open channels; whereas, in other tissues a gate must open to allow passage. An example of this occurs in the kidney, where there are both channel forms in different parts of the renal tubules. Cells involved in transmitting electrical impulses, such as nerve and muscle cells, have gated channels for sodium, potassium, and calcium in their membranes. Opening and closing these channels changes the relative concentrations on opposing sides of the membrane of these ions, resulting in facilitating electrical transmission along membranes (in the case of nerve cells) or in muscle contraction (in the case of muscle cells).

Carrier Proteins

Another type of protein embedded in the plasma membrane is a carrier protein. This aptly named protein binds a substance and, thus triggers a change of its own shape, moving the bound molecule from the cell's outside to its interior (Figure). Depending on the gradient, the material may move in the opposite direction. Carrier proteins are typically specific for a single substance. This selectivity adds to the plasma membrane's overall selectivity. Scientists poorly understand the exact mechanism for the change of shape. Proteins can change shape when their hydrogen bonds are affected, but this may not fully explain this mechanism. Each carrier protein is specific to one substance, and there are a finite number of these proteins in any membrane. This can cause problems in transporting enough material for the cell to function properly. When all of the proteins are bound to their ligands, they are saturated and the rate of transport is at its maximum. Increasing the concentration gradient at this point will not result in an increased transport rate.

A carrier is a transmembrane protein that moves molecules across the membrane through
Some substances are able to move down their concentration gradient across the plasma membrane with the aid of carrier proteins. Carrier proteins change shape as they move molecules across the membrane. (credit: modification of work by Mariana Ruiz Villareal)

An example of this process occurs in the kidney. In one part, the kidney filters glucose, water, salts, ions, and amino acids that the body requires. This filtrate, which includes glucose, then reabsorbs in another part of the kidney. Because there are only a finite number of carrier proteins for glucose, if more glucose is present than the proteins can handle, the excess is not transported and the body excretes this through urine. In a diabetic individual, the term is “spilling glucose into the urine.” A different group of carrier proteins, glucose transport proteins, or GLUTs, are involved in transporting glucose and other hexose sugars through plasma membranes within the body.

Channel and carrier proteins transport material at different rates. Channel proteins transport much more quickly than carrier proteins. Channel proteins facilitate diffusion at a rate of tens of millions of molecules per second; whereas, carrier proteins work at a rate of a thousand to a million molecules per second.

What does carrier proteins help move across the cell membrane?

26.2. 1.1 Membrane Carrier Proteins. Membrane carrier proteins are important transmembrane polypeptide molecules which facilitate the movement of charged and polar molecules and ions across the lipid bilayer structure of the cell membranes [4].

What travels through a carrier protein?

Carrier proteins are responsible for the diffusion of sugars, amino acids, and nucleosides. They are also the proteins that take up glucose molecules and transport them and other molecules (e.g. salts, amino acids, etc.)

How are transmembrane proteins transported?

Newly synthesized transmembrane proteins can be transported from the endoplasmic reticulum (ER) to the Golgi apparatus, from where they return to the ER (ER–Golgi recycling) or continue on to the trans-Golgi network (TGN) and the plasma membrane (PM) (secretory pathway).

What uses channel and carrier proteins to move molecules across the membrane?

Facilitated diffusion is the diffusion of solutes through transport proteins in the plasma membrane. Channel proteins, gated channel proteins, and carrier proteins are three types of transport proteins that are involved in facilitated diffusion.