The competition for land described by seed was worsened by which of the following?

  • Home
  • Data Products
  • Charts of Note

Subscribe to get highlights from our current and past research, Monday through Friday, or see our privacy policy.

Show

Get the latest charts via email, or on our mobile app for

The competition for land described by seed was worsened by which of the following?
and
The competition for land described by seed was worsened by which of the following?


States with strictest dicamba restrictions saw less dicamba applied after cotton planting in 2019

The competition for land described by seed was worsened by which of the following?

Monday, September 27, 2021

Dicamba is a common herbicide used to control annual and perennial broadleaf weeds. Federal and State restrictions for the use of dicamba can influence a farmer’s decision to adopt genetically engineered dicamba-tolerant (DT) seeds. In 2019, for example, Federal restrictions limited the application of dicamba on cotton fields from one hour after sunrise to two hours before sunset, limited applications to 60 days after planting cotton, and required that fields in areas with endangered plant species maintain buffers on all sides of the field. Different States imposed additional restrictions or extensions for dicamba application. For example, Georgia, Oklahoma, and Texas were among states that expanded the dicamba spraying window further into the growing season from the allowed 60 days after planting by granting Special Local Need registrations to their farmers, which were allowed at the time. Data from USDA’s 2019 Agricultural Resource Management Survey show that, in States with earlier dicamba cut-off dates, less dicamba was applied after planting during the growing season. In Arkansas and Louisiana, where cut-off dates occur early in the growing season, 16 percent and 23 percent, respectively, of DT cotton acres were sprayed with dicamba after planting in 2019. By contrast, Georgia allows dicamba spraying until one week before harvest, which can occur as late as December. About 57 percent of DT cotton acres received after-planting applications of dicamba in Georgia in 2019. In 2020, the U.S. Environmental Protection Agency instituted a single nationwide cut-off date of July 30. This chart appears in the July 2021 Amber Waves data feature, “Adoption of Genetically Engineered Dicamba-Tolerant Cotton Seeds is Prevalent Throughout the United States.”

Farmers in major cotton-producing States reported declines in the effectiveness of the herbicide glyphosate in 2019

The competition for land described by seed was worsened by which of the following?

Friday, July 30, 2021

In 2016, cotton farmers began using genetically engineered (GE) cotton seeds that were tolerant of the herbicide dicamba, which controls annual and perennial broadleaf weeds. Before the commercialization of dicamba-tolerant (DT) seeds, cotton farmers had widely adopted GE glyphosate- and glufosinate-tolerant crop varieties. As adoption rates of these herbicide-tolerant crops increased, the use of glyphosate and glufosinate also increased, particularly glyphosate. On some fields, a small number of naturally resistant weeds, from a small number of weed species, were able to withstand glyphosate applications. Over time, these weeds bred and spread, passing on their natural resistance to the next generation. By 2019, there were glyphosate-tolerant weeds in most cotton-producing States, leading to a reduction in the herbicide’s effectiveness. Initially, farmers increased glyphosate application amount and frequency to overcome this problem, but as resistance worsened, farmers included additional herbicides, such as dicamba. Data from USDA’s 2019 Agricultural Resource Management Survey showed that farmers observed declines in the effectiveness of glyphosate in all States surveyed. Generally, there appeared to be more DT seed use where farmers reported a decline in the effectiveness of glyphosate. However, the States with the most glyphosate-resistant weeds were not always the States with the most DT cotton. For example, a decline in the effectiveness of glyphosate was observed on about 68 percent of the planted cotton acreage in Texas, but DT seeds were planted on only 63 percent of that State’s cotton acreage. This chart appears in the July 2021 Amber Waves data feature Adoption of Genetically Engineered Dicamba-Tolerant Cotton Seeds is Prevalent Throughout the United States.

Use of dicamba-tolerant seeds common among most major cotton-producing States in 2019

The competition for land described by seed was worsened by which of the following?

Wednesday, July 7, 2021

Weed management, which increases the quality of the harvest and farm profit, is an essential component of cotton production. A common herbicide used to control annual and perennial broadleaf weeds is dicamba. In 2016, Monsanto first commercialized genetically engineered (GE) dicamba-tolerant (DT) cotton seeds. The genetic engineering process inserts into a plant’s genome traits, such as the ability to tolerate herbicide applications. Data from USDA’s Agricultural Resource Management Survey, which covered the majority of cotton-producing States, show that U.S. farmers quickly adopted DT cotton seeds. By 2019, the percentage of upland cotton (cotton with short staple length) acres planted with DT seeds had reached 69 percent in the 12 surveyed States. The States with the most DT seed use in 2019 were Mississippi, Missouri, South Carolina, and Tennessee—in which approximately 88 percent, 85 percent, 83 percent, and 80 percent of cotton acres were planted with DT varieties, respectively. This chart appears in the July 2021 Amber Waves data feature, Adoption of Genetically Engineered Dicamba-Tolerant Cotton Seeds is Prevalent Throughout the United States.

Since 2000, U.S. cotton producers have increasingly used genetically engineered (GE) seeds with stacked traits

The competition for land described by seed was worsened by which of the following?

Wednesday, December 16, 2020

Genetically engineered (GE) crops are broadly classified as herbicide-tolerant (HT), insect-resistant (Bt), or “stacked” varieties that combine HT and Bt traits. HT crops can tolerate one or more herbicides and provide farmers with a broad variety of options for effective weed control by targeting weeds without damaging crops. Bt crops contain genes from the soil bacterium Bacillus thuringiensis and provide effective control of insect pests, such as the tobacco budworm and pink bollworm. GE varieties of cotton were commercially introduced in the United States in 1995. GE seeds have accounted for the majority of cotton acres since 2000, expanding from 61 percent of acreage that year to 96 percent in 2020. During this time, the share of cotton acres planted with seeds that had the individual HT or Bt traits shrank as growers turned more often to stacked varieties that carried both traits. In 2000, about 26 percent of total cotton acres were HT only, 15 percent were Bt only, and 20 percent used stacked seeds. By 2020, 8 percent of acres were HT only, 5 percent were Bt only, and 83 percent used stacked seeds. This chart appears in the December 2020 Amber Waves article, “Use of Genetically Engineered Cotton Has Shifted Toward Stacked Seed Traits.”

Genetically engineered soybean, cotton, and corn seeds have become widely adopted

The competition for land described by seed was worsened by which of the following?

Friday, September 25, 2020

Genetically engineered (GE) seeds were commercially introduced in the United States for major field crops in 1996, with adoption rates increasing rapidly in the years that followed. Currently, more than 90 percent of U.S. corn, upland cotton, and soybeans are produced using GE varieties. Most of these GE seeds are herbicide tolerant (HT), insect resistant (Bt), or both (stacked). The share of U.S. soybean acres planted with HT seeds rose from 7 percent in 1996 to 68 percent in 2001, before plateauing at 94 percent in 2014. Bt soybeans are not yet commercially available. HT cotton acreage expanded from approximately 10 percent in 1997 to a high of 95 percent in 2019. Adoption rates for HT corn grew relatively slowly at first, but then plateaued at 89 percent in 2014. Meanwhile, the share of Bt corn acreage grew from approximately 8 percent in 1997 to 82 percent in 2020. Increases in adoption rates for Bt corn may be due to the commercial introduction of new varieties resistant to the corn rootworm and the corn earworm. Bt cotton acreage also expanded, from 15 percent of U.S. cotton acreage in 1997 to 88 percent in 2020. This chart appears in the Economic Research Service data product, Adoption of Genetically Engineered Crops in the U.S., updated July 2020.

Soybean farmers in States with more glyphosate-tolerant weed species appeared more likely to use dicamba-tolerant seeds

The competition for land described by seed was worsened by which of the following?

Wednesday, October 2, 2019

Left untreated, severe weed infestations can reduce soybean yields by more than 50 percent. Glyphosate is a broad-spectrum herbicide that kills most broad-leaf weeds and grasses. Genetically engineered glyphosate-tolerant soybeans were commercialized in 1996, and in the years that followed, the share of acres planted with glyphosate-tolerant soybeans and treated with glyphosate increased rapidly. By 2006, almost 9 out of every 10 acres were planted with glyphosate-tolerant seeds. As glyphosate-tolerant seed use became more common, an increasing number of soybean farmers started using glyphosate as their sole source of weed control. By 2018, glyphosate-tolerant weeds were identified in the majority of soybean-producing States and were particularly problematic in States located southwest of the Corn Belt, such as Mississippi, Kansas, Tennessee, Arkansas, and Missouri. Herbicides other than glyphosate, such as dicamba, can help control glyphosate-tolerant weeds. In 2018, about 43 percent of U.S. soybean acreage was planted with dicamba-tolerant seeds. The States with the most dicamba-tolerant seed use were Mississippi (79 percent of soybean acreage), Tennessee (71 percent), and Kansas (69 percent). Notably, there appears to be more dicamba-tolerant seed use in the States with the most glyphosate-tolerant weeds. This chart appears in the October 2019 Amber Waves feature, “The Use of Genetically Engineered Dicamba-Tolerant Soybean Seeds Has Increased Quickly, Benefiting Adopters but Damaging Crops in Some Fields.”

ICYMI... U.S. farmers adopting drought-tolerant corn about as quickly as they first adopted herbicide-tolerant and insect-tolerant varieties

The competition for land described by seed was worsened by which of the following?

Tuesday, August 27, 2019

Droughts are among the most frequent causes of crop yield losses, failures, and subsequent crop revenue losses across the world. Genetically engineered (GE) and non-GE drought tolerance became broadly available in corn varieties between 2011 and 2013. By 2016, 22 percent of total U.S. corn acreage was planted with DT varieties. To better understand this growth rate, ERS researchers compared it to the adoption of GE herbicide-tolerant (HT) and insect-resistant (Bt) corn. Between 1996 and 2000, HT corn acreage increased from 3 to 7 percent of total U.S. corn acreage, while Bt corn acreage increased from just over 1 percent to 19 percent. By 2012, nearly 75 percent of U.S. corn acres were planted to varieties with at least one GE trait. In 2016, 91 percent of DT corn fields also had HT or Bt traits. Some evidence suggests that these three traits are complementary. For example, a corn crop will generally be less vulnerable to drought if it is not competing with weeds for water, and if its roots and leaves are not damaged by insect pests. This chart appears in the January 2019 ERS report, Development, Adoption, and Management of Drought-Tolerant Corn in the United States. This Chart of Note was originally published March 21, 2019.

ICYMI... Use of herbicide-tolerant seeds increased quickly following their commercialization, but plateaued in recent years

The competition for land described by seed was worsened by which of the following?

Tuesday, August 20, 2019

A genetically engineered (GE) plant has had DNA inserted into its genome using laboratory techniques. The first GE herbicide-tolerant (HT) crops, which can survive applications of herbicides like glyphosate or glufosinate that kill most other plants, were created by inserting genes from soil bacteria. Generally, the use of HT corn, cotton, and soybeans in the United States increased quickly following their commercialization in 1996. HT soybean use increased most rapidly, largely because weed resistance to herbicides called ALS inhibitors had developed in the 1980s. By comparison, HT corn use increased relatively slowly, perhaps because corn farmers could use the herbicide atrazine, an effective alternative to glyphosate that could not be applied to soybeans or cotton. The percent of acreage planted with HT corn, cotton, and soybeans has plateaued in recent years, partly because adoption rates for these seeds is already quite high and because weed resistance to glyphosate has continued to develop and spread. As the problems posed by glyphosate-resistant weeds intensify, crop varieties with new HT traits are being developed. For example, a new HT variety of soybeans that is tolerant of herbicides called HPPD inhibitors will be available to U.S. growers in 2019. This chart appears in the December 2018 Amber Waves data feature, “Trends in the Adoption of Genetically Engineered Corn, Cotton, and Soybeans.” This Chart of Note was originally published February 28, 2019.

Drought-tolerant corn varieties often planted on non-irrigated fields

The competition for land described by seed was worsened by which of the following?

Monday, July 29, 2019

Droughts are among the most frequent causes of crop yield losses, failures, and subsequent crop revenue losses across the world. Farmers with access to ample sources of irrigation water can, at least partially, mitigate drought stress. Farmers can also plant drought-tolerant (DT) crop varieties—in 2016, DT varieties made up 22 percent of total U.S. corn acreage. DT traits improve the plant’s ability to take water up from soils and convert water into grain under a range of drought conditions. The use of irrigation does not preclude the use of DT corn. For example, nearly 31 percent of Nebraska’s irrigated fields were planted with DT varieties. Farmers’ decisions to irrigate their DT corn fields are influenced by many factors, including the extent of soil moisture deficits (if any), amount and timing of rainfall throughout the growing season, and irrigation expenses. However, most of the main U.S. corn producing States generally had higher levels of DT use on dryland fields. For example, 60 percent of non-irrigated fields in Nebraska were planted with DT varieties. This chart appears in the January 2019 ERS report, Development, Adoption, and Management of Drought-Tolerant Corn in the United States. Also see the article “Drought-Tolerant Corn in the United States: Research, Commercialization, and Related Crop Production Practices” from the March 2019 edition of ERS’s Amber Waves magazine.

No-till and conservation tillage practices are more common on fields planted with drought-tolerant corn

The competition for land described by seed was worsened by which of the following?

Monday, June 10, 2019

Droughts are among the most frequent causes of crop yield losses, failures, and subsequent crop revenue losses across the world. In 2016, 22 percent of total U.S. corn acreage was planted with drought-tolerant (DT) varieties. DT traits improve the plant’s ability to take water up from soils and convert water into plant matter. This creates a natural link between DT corn adoption and use of other water-management practices in corn production, such as conservation tillage and irrigation. Minimal disturbance of soils through conservation tillage makes more water available to the crop by reducing evaporation. No-till management—a conservation practice in which farmers do not disturb soils using tillage operations—was used on 41 percent of DT corn fields in 2016, compared to 28 percent of non-DT corn fields. Overall, conservation tillage (including no-till) was used on 62 percent of DT corn fields and 53 percent of non-DT corn fields that year. The higher adoption rates for DT corn suggest that producers may be using conservation tillage to complement the DT corn’s ability to conserve water. This chart appears in the January 2019 ERS report, Development, Adoption, and Management of Drought-Tolerant Corn in the United States. Also see the article “Drought-Tolerant Corn in the United States: Research, Commercialization, and Related Crop Production Practices” from the March 2019 edition of ERS’s Amber Waves magazine.

U.S. farmers adopting drought-tolerant corn about as quickly as they first adopted herbicide-tolerant and insect-tolerant varieties

The competition for land described by seed was worsened by which of the following?

Thursday, March 21, 2019

Droughts are among the most frequent causes of crop yield losses, failures, and subsequent crop revenue losses across the world. Genetically engineered (GE) and non-GE drought tolerance became broadly available in corn varieties between 2011 and 2013. By 2016, 22 percent of total U.S. corn acreage was planted with DT varieties. To better understand this growth rate, ERS researchers compared it to the adoption of GE herbicide-tolerant (HT) and insect-resistant (Bt) corn. Between 1996 and 2000, HT corn acreage increased from 3 to 7 percent of total U.S. corn acreage, while Bt corn acreage increased from just over 1 percent to 19 percent. By 2012, nearly 75 percent of U.S. corn acres were planted to varieties with at least one GE trait. In 2016, 91 percent of DT corn fields also had HT or Bt traits. Some evidence suggests that these three traits are complementary. For example, a corn crop will generally be less vulnerable to drought if it is not competing with weeds for water, and if its roots and leaves are not damaged by insect pests. This chart appears in the January 2019 ERS report, Development, Adoption, and Management of Drought-Tolerant Corn in the United States.

Use of herbicide-tolerant seeds increased quickly following their commercialization, but plateaued in recent years

The competition for land described by seed was worsened by which of the following?

Thursday, February 28, 2019

A genetically engineered (GE) plant has had DNA inserted into its genome using laboratory techniques. The first GE herbicide-tolerant (HT) crops, which can survive applications of herbicides like glyphosate or glufosinate that kill most other plants, were created by inserting genes from soil bacteria. Generally, the use of HT corn, cotton, and soybeans in the United States increased quickly following their commercialization in 1996. HT soybean use increased most rapidly, largely because weed resistance to herbicides called ALS inhibitors had developed in the 1980s. By comparison, HT corn use increased relatively slowly, perhaps because corn farmers could use the herbicide atrazine, an effective alternative to glyphosate that could not be applied to soybeans or cotton. The percent of acreage planted with HT corn, cotton, and soybeans has plateaued in recent years, partly because adoption rates for these seeds is already quite high and because weed resistance to glyphosate has continued to develop and spread. As the problems posed by glyphosate-resistant weeds intensify, crop varieties with new HT traits are being developed. For example, a new HT variety of soybeans that is tolerant of herbicides called HPPD inhibitors will be available to U.S. growers in 2019. This chart appears in the December 2018 Amber Waves data feature, "Trends in the Adoption of Genetically Engineered Corn, Cotton, and Soybeans.”

Drought-tolerant corn accounted for about 40 percent of corn acreage in drought-prone Nebraska and Kansas in 2016

The competition for land described by seed was worsened by which of the following?

Monday, February 4, 2019

Droughts have been among the most significant causes of crop yield reductions and losses for centuries. Most crop farmers have limited options to reduce the damaging physical effects of drought. Although Federal disaster program and crop insurance payments tend to be higher during droughts, they typically do not fully compensate farmers for drought-related losses. Farmers with access to ample sources of irrigation water can, at least partially, mitigate drought stress: irrigation both provides water and cools the crop. However, many water-intensive crops, including corn, are mostly grown on non-irrigated cropland. Drought-tolerant (DT) corn was commercially introduced in 2011. By 2016, DT corn acreage made up 22 percent of total U.S. planted corn acreage, with the highest shares in drought-prone Nebraska (42 percent) and Kansas (39 percent). Regional differences in drought severity and how recently farmers had experienced drought significantly influenced the adoption of DT corn. For example, States with counties that had experienced at least one severe-or-worse drought between 2011 and 2015 had adoption rates of at least 25 percent. Northern corn-producing States—such as Minnesota, Wisconsin, and Michigan—experienced less severe droughts during this time period and had lower adoption rates, ranging from 14 to 20 percent. This chart appears in the January 2019 ERS report, Development, Adoption, and Management of Drought-Tolerant Corn in the United States.

The share of corn and cotton acreage planted with genetically engineered stacked seeds has climbed since 2000

The competition for land described by seed was worsened by which of the following?

Tuesday, December 4, 2018

In 2018, U.S. farmers planted over 90 percent of corn and cotton acres with genetically engineered (GE) seeds. These GE seeds can be herbicide tolerant (HT), insect resistant (Bt), or “stacked” with both HT and Bt traits. Use of stacked seeds has climbed since 2000, when approximately 1 percent of corn and 20 percent of cotton were produced using stacked seeds. In 2018, by comparison, approximately 80 percent of the corn and cotton planted in the United States used stacked seeds. Increases in the use of stacked seeds may be due to the development of new seed products. For instance, the first Bt corn plant resistant to rootworms was commercialized in 2003, and other rootworm-resistant corn varieties reached the market in 2005 and 2006. The commercialization of these new seed products may have encouraged some farmers planting HT seeds to consider a stacked seed variety instead. This chart appears in the December 2018 Amber Waves data feature, “Trends in the Adoption of Genetically Engineered Corn, Cotton, and Soybeans.”

Genetically engineered soybean, cotton, and corn seeds have become widely adopted

The competition for land described by seed was worsened by which of the following?

Thursday, October 25, 2018

In 2018, U.S. farmers planted over 90 percent of soybean, cotton, and corn acres with genetically engineered (GE) seeds. Most of these GE seeds are herbicide tolerant (HT), insect resistant (Bt), or both (stacked). The share of U.S. soybean acres planted with HT seeds rose from about 7 percent in 1996 and plateaued at 94 percent in 2014. The share of HT cotton acreage expanded from about 2 percent in 1996 to a peak of 91 percent in 2014. The share of HT corn acreage grew relatively slowly at first, but reached about 90 percent in 2018. Meanwhile, the share of Bt corn acreage grew from 1 percent in 1996 to 82 percent in 2018. The share of Bt cotton acres also expanded, from nearly 15 percent in 1996 to 85 percent in 2018. Demand for GE seeds is affected by the severity of pest infestations, output prices, input prices, and the commercialization of new GE traits. For example, the introduction of new varieties of Bt corn resistant to corn rootworm and earworm may have contributed to the increase in Bt corn adoption rates since 2003. This chart appears in the ERS data product Adoption of Genetically Engineered Crops in the U.S., updated July 2018.

Most U.S. corn and cotton acreage in 2018 used genetically engineered seeds with stacked traits

The competition for land described by seed was worsened by which of the following?

Friday, July 20, 2018

Currently, over 90 percent of corn, cotton, and soybean acreage in the United States is planted with genetically engineered (GE) seeds. Most of these GE seeds are either herbicide tolerant (HT) or insect resistant (Bt). Seeds that have both HT and Bt traits are referred to as “stacked.” A decade ago, 40 percent of U.S. corn acres and 45 percent of U.S. cotton acres were planted with stacked seeds. As of 2018, 80 percent of corn acres and 82 percent of cotton acres were planted with these varieties. Soybean seeds with stacked traits are currently not commercially available in the United States. Adoption rates for stacked seeds have slowed in recent years. Adoption rates for stacked corn seeds increased by 3 percentage points from 2017 to 2018, while rates for stacked cotton increased by only 2 percentage points. The slow growth rates for stacked seeds may be due to relatively low corn prices, or because the majority of GE seeds are already stacked. This chart is drawn from the ERS data product Adoption of Genetically Engineered Crops in the U.S., updated July 2018.

Intellectual property rights for new plant varieties have expanded

The competition for land described by seed was worsened by which of the following?

Monday, January 8, 2018

Intellectual property rights are intended to offer incentives for innovation by protecting new inventions from imitation and competition. When the modern U.S. Patent and Trademark Office was established in 1836, new plant varieties were considered products of nature and, therefore, not eligible for protection under any form of intellectual property. In 1930, asexually reproducing plants were the first to receive protection through plant patents, which have been issued primarily for fruits, tree nuts, and horticultural species. The remainder of the plant kingdom, including a broad range of commercial crops, became eligible for protection in 1970 with the introduction of plant variety protection certificates (PVPCs). However, PVPCs had exemptions for farmers to save seeds and for research uses. Full patent protection (without these exemptions) arrived in 1980 with the U.S. Supreme Court decision Diamond v. Chakrabarty. This ruling extended utility patent protection—the type of protection provided to most inventions in other areas—to plants. Despite being available for the least amount of time, annual utility patent grants for plant cultivars and lines have rapidly overtaken PVPCs and reached similar levels as plant patents. The rapid rise of utility patents mirrored the rapid rise in private research and development in the seed and agricultural biotech sector over a similar period. This chart updates data found in the ERS report Agricultural Resources and Environmental Indicators, 2006 Edition.

Technological innovations have increased corn yields

The competition for land described by seed was worsened by which of the following?

Tuesday, September 19, 2017

With less labor and land being used in production over time, U.S. agriculture depends on raising the productivity of these resources for growth. Average national corn yield (a productivity measure) rose from around 30 bushels per acre in the 1930s (where it stood since USDA began measuring them in the 1860s) to nearly 180 bushels per acre in the present decade. This sustained growth in productivity was driven by the development and rapid adoption of a series of successive biological, chemical, and mechanical innovations. Every few years farmers adopt the latest hybrid seed variety, for example. These seeds are likely to have multiple genetically modified (GM) traits designed to protect the crop against pests and diseases or infer other valuable qualities—such as resistance to the corn borer, a major insect pest of the crop. Recently, the rapid adoption of tractor guidance systems has greatly improved the speed and efficiency of tillage and planting operations and the precision of seed, fertilizer, and pesticide applications. By 2010, such systems were used on 45 percent of corn planted acres. This chart updates data found in the ERS report, The Seed Industry in U.S. Agriculture: An Exploration of Data and Information on Crop Seed Markets, Regulation, Industry Structure, and Research and Development, released February 2004.

Most GE corn and cotton seeds now have both herbicide tolerance and insect resistance

The competition for land described by seed was worsened by which of the following?

Monday, July 31, 2017

Genetically engineered (GE) seeds have become widely used in major field crop production in the United States. Herbicide-tolerant (HT) crops were developed to survive the application of certain herbicides (such as glyphosate and glufosinate) that previously would have destroyed the crop along with the targeted weeds. Insect-resistant crops contain a gene from the soil bacterium Bacillus thuringiensis (Bt) that produces a protein that is toxic to specific insects. Seeds that have both herbicide-tolerant and insect-resistant traits are referred to as “stacked.” Three crops (corn, cotton, and soybeans) make up the bulk of the acres planted to GE crops. Recent data show that the adoption of stacked corn varieties has increased sharply, from 9 percent of U.S. corn acres in 2005 to 77 percent in 2017. Adoption rates for stacked cotton varieties have also grown rapidly, from 34 percent in 2005 to 80 percent in 2017 (soybeans have only HT varieties). Generally, many different GE traits can be stacked; varieties with three or four GE traits are now common in U.S. corn and cotton production. This chart is drawn from the ERS data product Adoption of Genetically Engineered Crops in the U.S.

Herbicide-tolerant sugarbeets accounted for 98 percent of sugarbeet acreage by 2013

The competition for land described by seed was worsened by which of the following?

Thursday, June 1, 2017

The United States produced about 8 million metric tons of sugar in 2013. Over half of that sugar came from sugarbeets. However, weed infestations can reduce yields, lower forage quality, and increase the severity of insect infestations. Compared to conventional sugarbeets, planting genetically engineered, herbicide-tolerant (GE HT) sugarbeets simplifies weed management. Specific herbicide (such as glysophate) applications kill weeds but then leave the GE HT sugarbeets growing. Studies suggest that farmers who plant GE HT sugarbeets can increase yields, while reducing the costs of weed management. Once introduced commercially in 2008, U.S. farmers adopted GE HT sugarbeets quickly. That year, farmers planted GE HT sugarbeets on about 60 percent of all sugarbeet acreage; by 2009, that number had grown to 95 percent. As of 2013, approximately 1.1 million acres of GE HT sugarbeets (98 percent of all sugarbeet acreage), with a production value of over $1.5 billion, were harvested in the United States. Minnesota, North Dakota, Idaho, and Michigan accounted for over 80 percent of sugarbeet production that year. This chart is based on the ERS report The Adoption of Genetically Engineered Alfalfa, Canola, and Sugarbeets in the United States, released November 2016.

Which of the following best explains how the developments represented in the above illustrations can be viewed as a turning point in US social and economic history?

Which of the following best explains how the developments represented in the above illustrations can be viewed as a turning point in U.S. social and economic history? A shift from the self-sustaining economic family unit to income-earning outside of the home or family sphere began to occur.

What was the rationale of the US government for the particular geographic borders of the Southeastern tribes represented in the above map?

What was the rationale of the U.S. government for the particular geographic borders of the reservations for the Southeastern tribes represented in the above map? It was thought the land was undesirable, bordering inhabitable land, such that white settlers would not want to encroach into the area.

How did the industrial developments represented in the above illustrations affect us regionalism during the antebellum period?

How did the industrial developments represented in the above illustrations affect U.S. regionalism during the antebellum period? It worsened sectional tensions by creating different regional economic preferences.

Which of the following is an example of syncretism as a method of cultural preservation in the Americas?

Which of the following is an example of syncretism as a method of cultural preservation in the Americas? Bases and missions further north would help protect their land claims and trans-ocean shipping from European rivals.