What is primarily responsible for carrying fluids with nutrients and waste on a random basis throughout the body?

Chapter 14: Fluids and ElectrolytesMULTIPLE CHOICE1.The nurse assesses that the patient’s urine has become much more concentrated, which res-ults from the effect of:1.adrenaline.2.aldosterone.3.antidiuretic hormone (ADH).4.insulin.ANS:2Aldosterone acts on the kidney tubules, affecting water retention and its attendant urine con-centration.

2.When the water absorption in the renal tubules becomes greater than normal, the nurse anti-cipates that the urine will become:

Get answer to your question and much more

3.The nurse explains that when oxygen is directed out of the arteries and into the capillaries,this process is:

Get answer to your question and much more

2. Wong LL, Verbalis JG. Systemic diseases associated with disorders of water homeostasis. Endocrinol Metab Clin North Am. 2002;31:121–140. [PubMed] [Google Scholar]

3. Adler SM, Verbalis JG. Disorders of body water homeostasis in critical illness. Endocrinol Metab Clin North Am. 2006;35:873–894, xi. [PubMed] [Google Scholar]

4. Hew-Butler T, Rosner MH, Fowkes-Godek S, Dugas JP, Hoffman MD, Lewis DP, Maughan RJ, Miller KC, Montain SJ, Rehrer NJ, et al. Statement of the 3rd International Exercise-Associated Hyponatremia Consensus Development Conference, Carlsbad, California, 2015. Br J Sports Med. 2015;49:1432–1446. [PubMed] [Google Scholar]

5. Manz F, Wentz A. The importance of good hydration for the prevention of chronic diseases. Nutr Rev. 2005;63:S2–S5. [PubMed] [Google Scholar]

6. Kolasa KM, Lackey CJ, Weismiller DG. How primary care providers might review evidence on hydration. J Am Coll Nutr. 2007;26:570S–574S. [PubMed] [Google Scholar]

7. Manz F. Hydration and disease. J Am Coll Nutr. 2007;26:535S–541S. [PubMed] [Google Scholar]

8. Sun X, Oberlander D, Huang J, Weissman C. Fluid resuscitation, nutritional support, and cholesterol in critically ill postsurgical patients. J Clin Anesth. 1998;10:302–308. [PubMed] [Google Scholar]

9. Miller GT, Garcia TB. The delicate balance of hydration. JEMS. 2006;31:36, 38–40. [PubMed] [Google Scholar]

10. Lieberman HR. Hydration and cognition: a critical review and recommendations for future research. J Am Coll Nutr. 2007;26:555S–561S. [PubMed] [Google Scholar]

11. Cooper PA, Turner MJ, Rothberg AD, Davies VA. Dynamic skinfold measurements to assess fluid status in low birthweight infants. Part 2: Correlation with postnatal weight changes. J Perinatol. 1989;9:395–400. [PubMed] [Google Scholar]

12. Anderson HL 3rd, Coran AG, Drongowski RA, Ha HJ, Bartlett RH. Extracellular fluid and total body water changes in neonates undergoing extracorporeal membrane oxygenation. J Pediatr Surg. 1992;27:1003–1007; discussion 1007-1008. [PubMed] [Google Scholar]

13. Hodak SP, Verbalis JG. Abnormalities of water homeostasis in aging. Endocrinol Metab Clin North Am. 2005;34:1031–1046, xi. [PubMed] [Google Scholar]

14. Fortes MB, Owen JA, Raymond-Barker P, Bishop C, Elghenzai S, Oliver SJ, Walsh NP. Is this elderly patient dehydrated? Diagnostic accuracy of hydration assessment using physical signs, urine, and saliva markers. J Am Med Dir Assoc. 2015;16:221–228. [PubMed] [Google Scholar]

15. Chang T, Ravi N, Plegue MA, Sonneville KR, Davis MM. Inadequate Hydration, BMI, and Obesity Among US Adults: NHANES 2009-2012. Ann Fam Med. 2016;14:320–324. [PMC free article] [PubMed] [Google Scholar]

16. Tarazi RC. Hemodynamic role of extracellular fluid in hypertension. Circ Res. 1976;38:73–83. [PubMed] [Google Scholar]

17. Cianci R, Citro F, Migneco A, Baldoni F, Minisci MC, Di Daniele N, De Lorenzo A. Body fluid compartments in hypertension. Eur Rev Med Pharmacol Sci. 2006;10:75–78. [PubMed] [Google Scholar]

18. Hür E, Özişik M, Ural C, Yildiz G, Mağden K, Köse SB, Köktürk F, Büyükuysal Ç, Yildirim I, Süleymanlar G, Ateş K, Duman S. Hypervolemia for hypertension pathophysiology: a population-based study. Biomed Res Int. 2014;2014:895401. [PMC free article] [PubMed] [Google Scholar]

19. Armstrong LE, Kavouras SA, Walsh NP, Roberts WO. Diagnosing dehydration? Blend evidence with clinical observations. Curr Opin Clin Nutr Metab Care. 2016;19:434–438. [PubMed] [Google Scholar]

20. Thomas DR, Cote TR, Lawhorne L, Levenson SA, Rubenstein LZ, Smith DA, Stefanacci RG, Tangalos EG, Morley JE; Dehydration Council. Understanding clinical dehydration and its treatment. J Am Med Dir Assoc. 2008;9:292–301. [PubMed] [Google Scholar]

21. Vivanti A, Harvey K, Ash S, Battistutta D. Clinical assessment of dehydration in older people admitted to hospital: what are the strongest indicators? Arch Gerontol Geriatr. 2008;47:340–355. [PubMed] [Google Scholar]

22. Edelman IS, Leibman J. Anatomy of body water and electrolytes. Am J Med. 1959;27:256–277. [PubMed] [Google Scholar]

23. Brown RG. Disorders of water and sodium balance. Postgrad Med. 1993;93:227–228, 231-234, 239-240 passim. [PubMed] [Google Scholar]

24. Mange K, Matsuura D, Cizman B, Soto H, Ziyadeh FN, Goldfarb S, Neilson EG. Language guiding therapy: the case of dehydration versus volume depletion. Ann Intern Med. 1997;127:848–853. [PubMed] [Google Scholar]

25. Spital A. Dehydration versus volume depletion--and the importance of getting it right. Am J Kidney Dis. 2007;49:721–722. [PubMed] [Google Scholar]

26. Bhave G, Neilson EG. Volume depletion versus dehydration: how understanding the difference can guide therapy. Am J Kidney Dis. 2011;58:302–309. [PMC free article] [PubMed] [Google Scholar]

27. Crecelius C. Dehydration: myth and reality. J Am Med Dir Assoc. 2008;9:287–288. [PubMed] [Google Scholar]

28. Raimann JG, Tzamaloukas AH, Levin NW, Ing TS. Osmotic Pressure in Clinical Medicine with an Emphasis on Dialysis. Semin Dial. 2017;30:69–79. [PubMed] [Google Scholar]

29. Argyropoulos C, Rondon-Berrios H, Raj DS, Malhotra D, Agaba EI, Rohrscheib M, Khitan Z, Murata GH, Shapiro JI, Tzamaloukas AH. Hypertonicity: Pathophysiologic Concept and Experimental Studies. Cureus. 2016;8:e596. [PMC free article] [PubMed] [Google Scholar]

30. Maffly RH, Leaf A. The potential of water in mammalian tissues. J Gen Physiol. 1959;42:1257–1275. [PMC free article] [PubMed] [Google Scholar]

31. Darrow DC, Yannet H. The changes in the distribution of body water accompanying increase and decrease in extracellular electrolyte. J Clin Invest. 1935;14:266–275. [PMC free article] [PubMed] [Google Scholar]

32. Rohrscheib M, Rondon-Berrios H, Argyropoulos C, Glew RH, Murata GH, Tzamaloukas AH. Indices of serum tonicity in clinical practice. Am J Med Sci. 2015;349:537–544. [PubMed] [Google Scholar]

33. Edelman IS, Leibman J, O’Meara MP, Birkenfeld LW. Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J Clin Invest. 1958;37:1236–1256. [PMC free article] [PubMed] [Google Scholar]

34. McCurdy DK. Hyperosmolar hyperglycemic nonketotic diabetic coma. Med Clin North Am. 1970;54:683–699. [PubMed] [Google Scholar]

35. Feig PU, McCurdy DK. The hypertonic state. N Engl J Med. 1977;297:1444–1454. [PubMed] [Google Scholar]

36. Adrogué HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342:1493–1499. [PubMed] [Google Scholar]

37. Rondon-Berrios H, Argyropoulos C, Ing TS, Raj DS, Malhotra D, Agaba EI, Rohrscheib M, Khitan ZJ, Murata GH, Shapiro JI, et al. Hypertonicity: Clinical entities, manifestations and treatment. World J Nephrol. 2017;6:1–13. [PMC free article] [PubMed] [Google Scholar]

38. Leaf A, Bartter FC, Santos RF, Wrong O. Evidence in man that urinary electrolyte loss induced by pitressin is a function of water retention. J Clin Invest. 1953;32:868–878. [PMC free article] [PubMed] [Google Scholar]

39. Leaf A. The clinical and physiologic significance of the serum sodium concentration. N Engl J Med. 1962;267:24–30 contd. [PubMed] [Google Scholar]

41. Adrogué HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342:1581–1589. [PubMed] [Google Scholar]

42. Lien YH, Shapiro JI. Hyponatremia: clinical diagnosis and management. Am J Med. 2007;120:653–658. [PubMed] [Google Scholar]

43. Rondon-Berrios H, Agaba EI, Tzamaloukas AH. Hyponatremia: pathophysiology, classification, manifestations and management. Int Urol Nephrol. 2014;46:2153–2165. [PubMed] [Google Scholar]

44. Schrier RW. Body water homeostasis: clinical disorders of urinary dilution and concentration. J Am Soc Nephrol. 2006;17:1820–1832. [PubMed] [Google Scholar]

45. Wolf AV, McDowell ME. Apparent and osmotic volumes of distribution of sodium, chloride, sulfate and urea. Am J Physiol. 1954;176:207–212. [PubMed] [Google Scholar]

46. Elkington JR, Danowski TS. The body fluids. Basic physiology and practical therapeutics. Baltimore: The Williams & Wilkins Company;; 1955. [Google Scholar]

47. Pace N, Kline L. Studies on body composition; use of radioactive hydrogen for measurement in vivo of total body water. J Biol Chem. 1947;168:459–469. [PubMed] [Google Scholar]

48. Schloerb PR, Friis-hansen BJ, Edelman IS, Solomon AK, Moore FD. The measurement of total body water in the human subject by deuterium oxide dilution; with a consideration of the dynamics of deuterium distribution. J Clin Invest. 1950;29:1296–1310. [PMC free article] [PubMed] [Google Scholar]

49. Soberman R, Brodie BB. The use of antipyrine in the measurement of total body water in man. J Biol Chem. 1949;179:31–42. [PubMed] [Google Scholar]

50. Chamney PW, Wabel P, Moissl UM, Müller MJ, Bosy-Westphal A, Korth O, Fuller NJ. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am J Clin Nutr. 2007;85:80–89. [PubMed] [Google Scholar]

51. Al-Ati T, Preston T, Al-Hooti S, Al-Hamad N, Al-Ghanim J, Al-Khulifi F, Al-Lahou B, Al-Othman A, Davidsson L. Total body water measurement using the 2H dilution technique for the assessment of body composition of Kuwaiti children. Public Health Nutr. 2015;18:259–263. [PubMed] [Google Scholar]

52. Schoeller DA, van Santen E, Peterson DW, Dietz W, Jaspan J, Klein PD. Total body water measurement in humans with 18O and 2H labeled water. Am J Clin Nutr. 1980;33:2686–2693. [PubMed] [Google Scholar]

53. Sagayama H, Yamada Y, Racine NM, Shriver TC, Schoeller DA; DLW Study Group. Dilution space ratio of 2H and 18O of doubly labeled water method in humans. J Appl Physiol (1985) 2016;120:1349–1354. [PMC free article] [PubMed] [Google Scholar]

54. Mazess RB, Barden HS, Bisek JP, Hanson J. Dual-energy x-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. Am J Clin Nutr. 1990;51:1106–1112. [PubMed] [Google Scholar]

55. Dempster P, Aitkens S. A new air displacement method for the determination of human body composition. Med Sci Sports Exerc. 1995;27:1692–1697. [PubMed] [Google Scholar]

56. Rebouche CJ, Pearson GA, Serfass RE, Roth CW, Finley JW. Evaluation of nuclear magnetic resonance spectroscopy for determination of deuterium abundance in body fluids: application to measurement of total-body water in human infants. Am J Clin Nutr. 1987;45:373–380. [PubMed] [Google Scholar]

57. NIH Consensus Statement. Bioelectrical impedance analysis in body composition measurement. National Institutes of Health Technology Assessment Conference Statement. December 12-14, 1994. Nutrition. 1996;12:749–762. [PubMed] [Google Scholar]

58. van Kreel BK, Cox-Reyven N, Soeters P. Determination of total body water by multifrequency bio-electric impedance: development of several models. Med Biol Eng Comput. 1998;36:337–345. [PubMed] [Google Scholar]

59. Beertema W, van Hezewijk M, Kester A, Forget PP, van Kreel B. Measurement of total body water in children using bioelectrical impedance: a comparison of several prediction equations. J Pediatr Gastroenterol Nutr. 2000;31:428–432. [PubMed] [Google Scholar]

60. Roubenoff R, Kehayias JJ, Dawson-Hughes B, Heymsfield SB. Use of dual-energy x-ray absorptiometry in body-composition studies: not yet a “gold standard” Am J Clin Nutr. 1993;58:589–591. [PubMed] [Google Scholar]

61. Matthie JR. Bioimpedance measurements of human body composition: critical analysis and outlook. Expert Rev Med Devices. 2008;5:239–261. [PubMed] [Google Scholar]

62. Hew-Butler T, Holexa BT, Fogard K, Stuempfle KJ, Hoffman MD. Comparison of body composition techniques before and after a 161-km ultramarathon using DXA, BIS and BIA. Int J Sports Med. 2015;36:169–174. [PubMed] [Google Scholar]

63. Hume R, Weyers E. Relationship between total body water and surface area in normal and obese subjects. J Clin Pathol. 1971;24:234–238. [PMC free article] [PubMed] [Google Scholar]

64. Watson PE, Watson ID, Batt RD. Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am J Clin Nutr. 1980;33:27–39. [PubMed] [Google Scholar]

65. Chumlea WC, Guo SS, Zeller CM, Reo NV, Baumgartner RN, Garry PJ, Wang J, Pierson RN Jr, Heymsfield SB, Siervogel RM. Total body water reference values and prediction equations for adults. Kidney Int. 2001;59:2250–2258. [PubMed] [Google Scholar]

66. Mellits ED, Cheek DB. The assessment of body water and fatness from infancy to adulthood. Monogr Soc Res Child Dev. 1970;35:12–26. [PubMed] [Google Scholar]

67. Tzamaloukas AH, Murata GH, Vanderjagt DJ, Glew RH. Estimates of body water, fat-free mass, and body fat in patients on peritoneal dialysis by anthropometric formulas. Kidney Int. 2003;63:1605–1617. [PubMed] [Google Scholar]

68. Tzamaloukas AH, Murata GH. Estimating urea volume in amputees on peritoneal dialysis by modified anthropometric formulas. Adv Perit Dial. 1996;12:143–146. [PubMed] [Google Scholar]

69. Tzamaloukas AH. Effect of edema on urea kinetic studies in peritoneal dialysis patients. Perit Dial Int. 1994;14:398–401. [PubMed] [Google Scholar]

70. Tzamaloukas AH, Murata GH, Dimitriadis A, Voukiklari S, Antoniou S, Malhotra D, Kakavas J, Dombros NV, Nicolopoulou N, Balaskas EV. Fractional urea clearance in continuous ambulatory peritoneal dialysis: effects of volume disturbances. Nephron. 1996;74:567–571. [PubMed] [Google Scholar]

71. Chertow GM, Lazarus JM, Lew NL, Ma L, Lowrie EG. Development of a population-specific regression equation to estimate total body water in hemodialysis patients. Kidney Int. 1997;51:1578–1582. [PubMed] [Google Scholar]

72. Johansson AC, Samuelsson O, Attman PO, Bosaeus I, Haraldsson B. Limitations in anthropometric calculations of total body water in patients on peritoneal dialysis. J Am Soc Nephrol. 2001;12:568–573. [PubMed] [Google Scholar]

73. Heymsfield SB, Ebbeling CB, Zheng J, Pietrobelli A, Strauss BJ, Silva AM, Ludwig DS. Multi-component molecular-level body composition reference methods: evolving concepts and future directions. Obes Rev. 2015;16:282–294. [PMC free article] [PubMed] [Google Scholar]

74. Siri WE. Techniques for Measuring Body Composition. In: Brožek J, Henshel A, editors. National Academy of Sciences/National Research Council, Washington, DC; 1961. Body composition from fluid spaces and density: analysis of methods; pp. 223–244. [Google Scholar]

75. Wang Z, Deurenberg P, Wang W, Pietrobelli A, Baumgartner RN, Heymsfield SB. Hydration of fat-free body mass: new physiological modeling approach. Am J Physiol. 1999;276:E995–E1003. [PubMed] [Google Scholar]

76. Wang Z, Deurenberg P, Wang W, Pietrobelli A, Baumgartner RN, Heymsfield SB. Hydration of fat-free body mass: review and critique of a classic body-composition constant. Am J Clin Nutr. 1999;69:833–841. [PubMed] [Google Scholar]

77. Wang Z, Deurenberg P, Heymsfield SB. Cellular-level body composition model. A new approach to studying fat-free mass hydration. Ann N Y Acad Sci. 2000;904:306–311. [PubMed] [Google Scholar]

78. Edmonds CJ, Jasani BM, Smith T. Total body potassium and body fat estimation in relationship to height, sex, age, malnutrition and obesity. Clin Sci Mol Med. 1975;48:431–440. [PubMed] [Google Scholar]

79. Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care. 2009;32:1335–1343. [PMC free article] [PubMed] [Google Scholar]

80. Dunger DB, Sperling MA, Acerini CL, Bohn DJ, Daneman D, Danne TP, Glaser NS, Hanas R, Hintz RL, Levitsky LL, et al. European Society for Paediatric Endocrinology/Lawson Wilkins Pediatric Endocrine Society consensus statement on diabetic ketoacidosis in children and adolescents. Pediatrics. 2004;113:e133–e140. [PubMed] [Google Scholar]

81. Tzamaloukas AH, Sun Y, Konstantinov NK, Dorin RI, Ing TS, Malhotra D, Murata GH, Shapiro JI. Principles of quantitative fluid and cation replacement in extreme hyperglycemia. Cureus. 2013;5:e110. [Google Scholar]

82. Verbalis JG, Goldsmith SR, Greenberg A, Korzelius C, Schrier RW, Sterns RH, Thompson CJ. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med. 2013;126:S1–42. [PubMed] [Google Scholar]

83. Spasovski G, Vanholder R, Allolio B, Annane D, Ball S, Bichet D, Decaux G, Fenske W, Hoorn EJ, Ichai C, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant. 2014;29 Suppl 2:i1–i39. [PubMed] [Google Scholar]

84. Tzamaloukas AH, Malhotra D, Rosen BH, Raj DS, Murata GH, Shapiro JI. Principles of management of severe hyponatremia. J Am Heart Assoc. 2013;2:e005199. [PMC free article] [PubMed] [Google Scholar]

85. Berl T. The Adrogue-Madias formula revisited. Clin J Am Soc Nephrol. 2007;2:1098–1099. [PubMed] [Google Scholar]

86. Sood L, Sterns RH, Hix JK, Silver SM, Chen L. Hypertonic saline and desmopressin: a simple strategy for safe correction of severe hyponatremia. Am J Kidney Dis. 2013;61:571–578. [PubMed] [Google Scholar]

87. Tzamaloukas AH, Shapiro JI, Raj DS, Murata GH, Glew RH, Malhotra D. Management of severe hyponatremia: infusion of hypertonic saline and desmopressin or infusion of vasopressin inhibitors? Am J Med Sci. 2014;348:432–439. [PMC free article] [PubMed] [Google Scholar]

88. Sterns RH. Disorders of plasma sodium--causes, consequences, and correction. N Engl J Med. 2015;372:55–65. [PubMed] [Google Scholar]

89. Sterns RH. Formulas for fixing serum sodium: curb your enthusiasm. Clin Kidney J. 2016;9:527–529. [PMC free article] [PubMed] [Google Scholar]

90. Yoo H, Paranji R, Pollack GH. Impact of Hydrophilic Surfaces on Interfacial Water Dynamics Probed with NMR Spectroscopy. J Phys Chem Lett. 2011;2:532–536. [PMC free article] [PubMed] [Google Scholar]

91. Editorial: Sick cells and hyponatraemia. Lancet. 1974;1:342–343. [PubMed] [Google Scholar]

92. Berl T, Rastegar A. A patient with severe hyponatremia and hypokalemia: osmotic demyelination following potassium repletion. Am J Kidney Dis. 2010;55:742–748. [PubMed] [Google Scholar]

93. Frazier HS. Renal regulation of sodium balance. N Engl J Med. 1968;279:868–875. [PubMed] [Google Scholar]

94. Palmer BF, Alpern RJ, Seldin DW. Physiology and pathophysiology of sodium retention and wastage. In: Alpern RJ, Hebert SC, editors. Seldin and Giebisch’s The Kidney. Physiology and Pathophysiology. 4th ed. Amsterdam: Elsevier; 2008. pp. 1005–1049. [Google Scholar]

95. Skorecki KL, Winaver J, Abassi ZA. Extracellular fluid and edema formation. In: Brenner BM, editor. Brenner and Rector’s The Kidney. 8th ed. Philadelphia: Saunders; 2008. pp. 398–458. [Google Scholar]

96. Thurau K. Renal Na-reabsorption and O2-uptake in dogs during hypoxia and hydrochlorothiazide infusion. Proc Soc Exp Biol Med. 1961;106:714–717. [PubMed] [Google Scholar]

97. Moore FD. The use of isotopes in surgical research. Surg Gynecol Obstet. 1948;86:129–147. [PubMed] [Google Scholar]

98. Cizek LJ. Total water content of laboratory animals with special reference to volume of fluid within the lumen of the gastrointestinal tract. Am J Physiol. 1954;179:104–110. [PubMed] [Google Scholar]

99. Cotlove E. Mechanism and extent of distribution of inulin and sucrose in chloride space of tissues. Am J Physiol. 1954;176:396–410. [PubMed] [Google Scholar]

100. Moore FD, Mcmurrey JD, Parker HV, Magnus IC. Body composition; total body water and electrolytes: intravascular and extravascular phase volumes. Metabolism. 1956;5:447–467. [PubMed] [Google Scholar]

101. Gaudino M, Schwartz IL, Levitt MF. Insulin volume of distribution as a measure of extracellular fluid in dog and man. Proc Soc Exp Biol Med. 1948;68:507–511. [PubMed] [Google Scholar]

102. Deane N, Schreiner GE, Robertson JS. The velocity of distribution of sucrose between plasma and interstitial fluid, with reference to the use of sucrose for the measurement or extracellular fluid in man. J Clin Invest. 1951;30:1463–1468. [PMC free article] [PubMed] [Google Scholar]

103. Cardozo RH, Edelman IS. The volume of distribution of sodium thiosulfate as a measure of the extracellular fluid space. J Clin Invest. 1952;31:280–290. [PMC free article] [PubMed] [Google Scholar]

104. Ikkos D. Measurement of the extracellular fluid volume by thiosulfate. I. The measurement of the apparent volume of distribution of thiosulfate. Acta Physiol Scand. 1956;35:240–253. [PubMed] [Google Scholar]

105. Elkinton JR. The volume of distribution of mannitol as a measure of the volume of extracellular fluid, with a study of the mannitol method. J Clin Invest. 1947;26:1088–1097. [PMC free article] [PubMed] [Google Scholar]

106. Walser M, Seldin DW, Grollman A. An evaluation of radiosulfate for the determination of the volume of extracellular fluid in man and dogs. J Clin Invest. 1953;32:299–311. [PMC free article] [PubMed] [Google Scholar]

107. Albert SN, Shibuya J, Custeau P, Albert CA, Hirsch EF. A simplified method for measuring the volume of extracellular fluid by radioactive sulfur (S35): observations on shifts of fluid in induced hypotension. South Med J. 1967;60:933–939. [PubMed] [Google Scholar]

108. Binder C, Leth A. The distribution volume of 82Br- as a measurement of the extracellular fluid volume in normal persons. Scand J Clin Lab Invest. 1970;25:291–297. [PubMed] [Google Scholar]

109. Gamble JL Jr, Robertson JS, Hannigan CA, Foster CG, Farr LE. Chloride, bromide, sodium, and sucrose spaces in man. J Clin Invest. 1953;32:483–489. [PMC free article] [PubMed] [Google Scholar]

110. Threefoot SA, Burch GE, Ray CT. Chloride space and total exchanging chloride in man measured with long-life radio-chloride Cl36. J Lab Clin Med. 1953;42:16–33. [PubMed] [Google Scholar]

111. Tzamaloukas AH. Non-radioisotopic estimate of extracellular volume during isotonic expansion in anuric dogs. Arch Int Physiol Biochim. 1983;91:279–291. [PubMed] [Google Scholar]

112. Kaltreider NL, Meneely GR, Allen JR, Bale WF. Determination of the volume of the extracellular fluid of the body with radioactive sodium. J Exp Med. 1941;74:569–590. [PMC free article] [PubMed] [Google Scholar]

113. Doxiadis SA, Gairdner D. The estimation of the extracellular fluid volume by the thiocyanate method in children and adults. Clin Sci. 1948;6:257–267. [PubMed] [Google Scholar]

114. Ellis KJ. Human body composition: in vivo methods. Physiol Rev. 2000;80:649–680. [PubMed] [Google Scholar]

115. Van Loan MD, Mayclin PL. Use of multi-frequency bioelectrical impedance analysis for the estimation of extracellular fluid. Eur J Clin Nutr. 1992;46:117–124. [PubMed] [Google Scholar]

116. Deurenberg P, Tagliabue A, Schouten FJ. Multi-frequency impedance for the prediction of extracellular water and total body water. Br J Nutr. 1995;73:349–358. [PubMed] [Google Scholar]

117. Deurenberg P, Tagliabue A, Wang J, Wolde-Gebriel Z. Multi-frequency bioelectrical impedance for the prediction of body water compartments: validation in different ethnic groups. Asia Pac J Clin Nutr. 1996;5:217–221. [PubMed] [Google Scholar]

118. Thomas BJ, Ward LC, Cornish BH. Bioimpedance spectrometry in the determination of body water compartments: accuracy and clinical significance. Appl Radiat Isot. 1998;49:447–455. [PubMed] [Google Scholar]

119. Jaffrin MY, Morel H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med Eng Phys. 2008;30:1257–1269. [PubMed] [Google Scholar]

120. Jaffrin MY, Morel H. Extracellular volume measurements using bioimpedance spectroscopy-Hanai method and wrist-ankle resistance at 50 kHz. Med Biol Eng Comput. 2009;47:77–84. [PubMed] [Google Scholar]

121. Buendia R, Seoane F, Lindecrantz K, Bosaeus I, Gil-Pita R, Johannsson G, Ellegård L, Ward LC. Estimation of body fluids with bioimpedance spectroscopy: state of the art methods and proposal of novel methods. Physiol Meas. 2015;36:2171–2187. [PubMed] [Google Scholar]

122. Jones SL, Tanaka A, Eastwood GM, Young H, Peck L, Bellomo R, Mårtensson J. Bioelectrical impedance vector analysis in critically ill patients: a prospective, clinician-blinded investigation. Crit Care. 2015;19:290. [PMC free article] [PubMed] [Google Scholar]

123. Forni LG, Hasslacher J, Joannidis M. Bioelectrical impedance vector analysis in the critically ill: cool tool or just another ‘toy’? Crit Care. 2015;19:387. [PMC free article] [PubMed] [Google Scholar]

124. Jensen MD, Kanaley JA, Roust LR, O’Brien PC, Braun JS, Dunn WL, Wahner HW. Assessment of body composition with use of dual-energy x-ray absorptiometry: evaluation and comparison with other methods. Mayo Clin Proc. 1993;68:867–873. [PubMed] [Google Scholar]

125. Laskey MA. Dual-energy X-ray absorptiometry and body composition. Nutrition. 1996;12:45–51. [PubMed] [Google Scholar]

126. Clasey JL, Hartman ML, Kanaley J, Wideman L, Teates CD, Bouchard C, Weltman A. Body composition by DEXA in older adults: accuracy and influence of scan mode. Med Sci Sports Exerc. 1997;29:560–567. [PubMed] [Google Scholar]

127. St-Onge MP, Wang Z, Horlick M, Wang J, Heymsfield SB. Dual-energy X-ray absorptiometry lean soft tissue hydration: independent contributions of intra- and extracellular water. Am J Physiol Endocrinol Metab. 2004;287:E842–E847. [PubMed] [Google Scholar]

128. McDonald CM, Carter GT, Abresch RT, Widman L, Styne DM, Warden N, Kilmer DD. Body composition and water compartment measurements in boys with Duchenne muscular dystrophy. Am J Phys Med Rehabil. 2005;84:483–491. [PubMed] [Google Scholar]

129. Albanese CV, Diessel E, Genant HK. Clinical applications of body composition measurements using DXA. J Clin Densitom. 2003;6:75–85. [PubMed] [Google Scholar]

130. Uszko-Lencer NH, Bothmer F, van Pol PE, Schols AM. Measuring body composition in chronic heart failure: a comparison of methods. Eur J Heart Fail. 2006;8:208–214. [PubMed] [Google Scholar]

131. Wilson JP, Mulligan K, Fan B, Sherman JL, Murphy EJ, Tai VW, Powers CL, Marquez L, Ruiz-Barros V, Shepherd JA. Dual-energy X-ray absorptiometry-based body volume measurement for 4-compartment body composition. Am J Clin Nutr. 2012;95:25–31. [PMC free article] [PubMed] [Google Scholar]

132. Hinton BJ, Fan B, Ng BK, Shepherd JA. Dual energy X-ray absorptiometry body composition reference values of limbs and trunk from NHANES 1999-2004 with additional visualization methods. PLoS One. 2017;12:e0174180. [PMC free article] [PubMed] [Google Scholar]

133. Martin MA, Tatton WG, Lemaire C, Armstrong RL. Determination of extracellular/intracellular fluid ratios from magnetic resonance images: accuracy, feasibility, and implementation. Magn Reson Med. 1990;15:58–69. [PubMed] [Google Scholar]

134. Ma K, Kotler DP, Wang J, Thornton JC, Ma R, Pierson RN Jr. Reliability of in vivo neutron activation analysis for measuring body composition: comparisons with tracer dilution and dual-energy x-ray absorptiometry. J Lab Clin Med. 1996;127:420–427. [PubMed] [Google Scholar]

135. Shen W, St-Onge MP, Pietrobelli A, Wang J, Wang Z, Heshka S, Heymsfield SB. Four-compartment cellular level body composition model: comparison of two approaches. Obes Res. 2005;13:58–65. [PMC free article] [PubMed] [Google Scholar]

136. Silva AM, Wang J, Pierson RN Jr, Wang Z, Spivack J, Allison DB, Heymsfield SB, Sardinha LB, Heshka S. Extracellular water across the adult lifespan: reference values for adults. Physiol Meas. 2007;28:489–502. [PubMed] [Google Scholar]

137. Dawson P, Blomley MJ. Contrast media as extracellular fluid space markers: adaptation of the central volume theorem. Br J Radiol. 1996;69:717–722. [PubMed] [Google Scholar]

138. Schwartz IL, Schachter D, Freinkel N. The measurement of extracellular fluid in man by means of a constant infusion technique. J Clin Invest. 1949;28:1117–1125. [PMC free article] [PubMed] [Google Scholar]

139. Ladegaard-Pedersen HJ. Measurement of extracellular volume and renal clearance by a single injection of inulin. Scand J Clin Lab Invest. 1972;29:145–153. [PubMed] [Google Scholar]

140. Nielsen OM. Extracellular volume, renal clearance and whole body permeability-surface area product in man, measured after single injection of polyfructosan. Scand J Clin Lab Invest. 1985;45:217–222. [PubMed] [Google Scholar]

141. Brøchner-Mortensen J. A simple single injection method for determination of the extracellular fluid volume. Scand J Clin Lab Invest. 1980;40:567–573. [PubMed] [Google Scholar]

142. Bird NJ, Michell AR, Peters AM. Accurate measurement of extracellular fluid volume from the slope/intercept technique after bolus injection of a filtration marker. Physiol Meas. 2009;30:1371–1379. [PubMed] [Google Scholar]

143. Peters AM, Glass DM, Bird NJ. Extracellular fluid volume and glomerular filtration rate: their relation and variabilities in patients with renal disease and healthy individuals. Nucl Med Commun. 2011;32:649–653. [PubMed] [Google Scholar]

144. Abraham AG, Muñoz A, Furth SL, Warady B, Schwartz GJ. Extracellular volume and glomerular filtration rate in children with chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:741–747. [PMC free article] [PubMed] [Google Scholar]

145. Russell CD, Bischoff PG, Rowell KL, Lloyd LK, Dubovsky EV. Estimation of extracellular fluid volume from plasma clearance on technetium-99m DTPA by a single-injection, two-sample method. J Nucl Med. 1988;29:255–258. [PubMed] [Google Scholar]

146. Smye SW, Norwood HM, Buur T, Bradbury M, Brocklebank JT. Comparison of extra-cellular fluid volume measurement in children by 99Tcm-DPTA clearance and multi-frequency impedance techniques. Physiol Meas. 1994;15:251–260. [PubMed] [Google Scholar]

147. Visser FW, Muntinga JH, Dierckx RA, Navis G. Feasibility and impact of the measurement of extracellular fluid volume simultaneous with GFR by 125I-iothalamate. Clin J Am Soc Nephrol. 2008;3:1308–1315. [PMC free article] [PubMed] [Google Scholar]

148. Espejo MG, Neu J, Hamilton L, Eitzman B, Gimotty P, Bucciarelli RL. Determination of extracellular fluid volume using impedance measurements. Crit Care Med. 1989;17:360–363. [PubMed] [Google Scholar]

149. Miholic J, Reilmann L, Meyer HJ, Körber H, Dieckelmann A, Pichlmayr R. Estimation of extracellular space and blood volume using bioelectrical impedance measurements. Clin Investig. 1992;70:600–605. [PubMed] [Google Scholar]

150. De Lorenzo A, Candeloro N, Andreoli A, Deurenberg P. Determination of intracellular water by multifrequency bioelectrical impedance. Ann Nutr Metab. 1995;39:177–184. [PubMed] [Google Scholar]

151. Bedogni G, Bollea MR, Severi S, Trunfio O, Manzieri AM, Battistini N. The prediction of total body water and extracellular water from bioelectric impedance in obese children. Eur J Clin Nutr. 1997;51:129–133. [PubMed] [Google Scholar]

152. van den Ham EC, Kooman JP, Christiaans MH, Nieman FH, Van Kreel BK, Heidendal GA, Van Hooff JP. Body composition in renal transplant patients: bioimpedance analysis compared to isotope dilution, dual energy X-ray absorptiometry, and anthropometry. J Am Soc Nephrol. 1999;10:1067–1079. [PubMed] [Google Scholar]

153. Goovaerts HG, Faes TJ, de Valk-de Roo GW, ten Bolscher M, Netelenbosch JC, van der Vijgh WJ, Heethaar RM. Estimation of extracellular volume by a two-frequency measurement. Ann N Y Acad Sci. 1999;873:99–104. [PubMed] [Google Scholar]

154. Kim J, Wang Z, Gallagher D, Kotler DP, Ma K, Heymsfield SB. Extracellular water: sodium bromide dilution estimates compared with other markers in patients with acquired immunodeficiency syndrome. JPEN J Parenter Enteral Nutr. 1999;23:61–66. [PubMed] [Google Scholar]

155. Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A, Korth O, Müller MJ, Ellegård L, Malmros V, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas. 2006;27:921–933. [PubMed] [Google Scholar]

156. Birzniece V, Khaw CH, Nelson AE, Meinhardt U, Ho KK. A critical evaluation of bioimpedance spectroscopy analysis in estimating body composition during GH treatment: comparison with bromide dilution and dual X-ray absorptiometry. Eur J Endocrinol. 2015;172:21–28. [PubMed] [Google Scholar]

157. Filler G, Huang SH. A simple estimate for extracellular volume: too simple? Clin J Am Soc Nephrol. 2011;6:695–696. [PubMed] [Google Scholar]

158. Bhujwalla ZM, McCoy CL, Glickson JD, Gillies RJ, Stubbs M. Estimations of intra- and extracellular volume and pH by 31P magnetic resonance spectroscopy: effect of therapy on RIF-1 tumours. Br J Cancer. 1998;78:606–611. [PMC free article] [PubMed] [Google Scholar]

159. Mills SJ, Soh C, Rose CJ, Cheung S, Zhao S, Parker GJ, Jackson A. Candidate biomarkers of extravascular extracellular space: a direct comparison of apparent diffusion coefficient and dynamic contrast-enhanced MR imaging--derived measurement of the volume of the extravascular extracellular space in glioblastoma multiforme. AJNR Am J Neuroradiol. 2010;31:549–553. [PMC free article] [PubMed] [Google Scholar]

160. Magzoub M, Zhang H, Dix JA, Verkman AS. Extracellular space volume measured by two-color pulsed dye infusion with microfiberoptic fluorescence photodetection. Biophys J. 2009;96:2382–2390. [PMC free article] [PubMed] [Google Scholar]

161. Kouw PM, Kooman JP, Cheriex EC, Olthof CG, de Vries PM, Leunissen KM. Assessment of postdialysis dry weight: a comparison of techniques. J Am Soc Nephrol. 1993;4:98–104. [PubMed] [Google Scholar]

162. Woodrow G, Oldroyd B, Turney JH, Davies PS, Day JM, Smith MA. Four-component model of body composition in chronic renal failure comprising dual-energy X-ray absorptiometry and measurement of total body water by deuterium oxide dilution. Clin Sci (Lond) 1996;91:763–769. [PubMed] [Google Scholar]

163. Cooper BA, Aslani A, Ryan M, Zhu FY, Ibels LS, Allen BJ, Pollock CA. Comparing different methods of assessing body composition in end-stage renal failure. Kidney Int. 2000;58:408–416. [PubMed] [Google Scholar]

164. Tzamaloukas AH, Onime A, Agaba EI, Vanderjagt DJ, Ma I, Lopez A, Tzamaloukas RA, Glew RH. Hydration abnormalities in Nigerian patients on chronic hemodialysis. Hemodial Int. 2007;11 Suppl 3:S22–S28. [PubMed] [Google Scholar]

165. Passauer J, Petrov H, Schleser A, Leicht J, Pucalka K. Evaluation of clinical dry weight assessment in haemodialysis patients using bioimpedance spectroscopy: a cross-sectional study. Nephrol Dial Transplant. 2010;25:545–551. [PubMed] [Google Scholar]

166. Kotanko P, Levin NW, Zhu F. Current state of bioimpedance technologies in dialysis. Nephrol Dial Transplant. 2008;23:808–812. [PubMed] [Google Scholar]

167. Antlanger M, Hecking M, Haidinger M, Werzowa J, Kovarik JJ, Paul G, Eigner M, Bonderman D, Hörl WH, Säemann MD. Fluid overload in hemodialysis patients: a cross-sectional study to determine its association with cardiac biomarkers and nutritional status. BMC Nephrol. 2013;14:266. [PMC free article] [PubMed] [Google Scholar]

168. Chen HS, Lee KC, Cheng CT, Hou CC, Liou HH, Lin CJ, Lim PS. Application of Bioimpedance Spectroscopy in Asian Dialysis Patients (ABISAD): serial follow-up and dry weight evaluation. Clin Kidney J. 2013;6:29–34. [PMC free article] [PubMed] [Google Scholar]

169. Hur E, Usta M, Toz H, Asci G, Wabel P, Kahvecioglu S, Kayikcioglu M, Demirci MS, Ozkahya M, Duman S, et al. Effect of fluid management guided by bioimpedance spectroscopy on cardiovascular parameters in hemodialysis patients: a randomized controlled trial. Am J Kidney Dis. 2013;61:957–965. [PubMed] [Google Scholar]

170. Asmat H, Iqbal R, Sharif F, Mahmood A, Abbas A, Kashif W. Validation of bioelectrical impedance analysis for assessing dry weight of dialysis patients in Pakistan. Saudi J Kidney Dis Transpl. 2017;28:285–291. [PubMed] [Google Scholar]

171. Katz MA. Hyperglycemia-induced hyponatremia--calculation of expected serum sodium depression. N Engl J Med. 1973;289:843–844. [PubMed] [Google Scholar]

172. Tzamaloukas AH, Rohrscheib M, Ing TS, Siamopoulos KC, Elisaf MF, Spalding CT. Serum tonicity, extracellular volume and clinical manifestations in symptomatic dialysis-associated hyperglycemia treated only with insulin. Int J Artif Organs. 2004;27:751–758. [PubMed] [Google Scholar]

173. Tzamaloukas AH, Ing TS, Siamopoulos KC, Rohrscheib M, Elisaf MS, Raj DS, Murata GH. Body fluid abnormalities in severe hyperglycemia in patients on chronic dialysis: theoretical analysis. J Diabetes Complications. 2007;21:374–380. [PubMed] [Google Scholar]

174. Tzamaloukas AH, Ing TS, Siamopoulos KC, Rohrscheib M, Elisaf MS, Raj DS, Murata GH. Body fluid abnormalities in severe hyperglycemia in patients on chronic dialysis: review of published reports. J Diabetes Complications. 2008;22:29–37. [PubMed] [Google Scholar]

175. Conard V, Franckson JR, Bastenie PA, Kesten J, Kovacs L. [Critical study of the intravenous blood sugar curve in the normal man and the determination of a coefficient of glucose assimilation] Arch Int Pharmacodyn Ther. 1953;93:132–134. [PubMed] [Google Scholar]

176. Ikkos D, Luft R. On the volume of distribution of glucose in man. Acta Endocrinol (Copenh) 1957;25:335–344. [PubMed] [Google Scholar]

177. Hirota K, Ishihara H, Tsubo T, Matsuki A. Estimation of the initial distribution volume of glucose by an incremental plasma glucose level at 3 min after i.v. glucose in humans. Br J Clin Pharmacol. 1999;47:361–364. [PMC free article] [PubMed] [Google Scholar]

178. Tzamaloukas AH. Characterization of the state of body fluids in anuric hyperglycemic humans. Miner Electrolyte Metab. 1987;13:126–132. [PubMed] [Google Scholar]

179. Arieff AI, Carroll HJ. Nonketotic hyperosmolar coma with hyperglycemia: clinical features, pathophysiology, renal function, acid-base balance, plasma-cerebrospinal fluid equilibria and the effects of therapy in 37 cases. Medicine (Baltimore) 1972;51:73–94. [PubMed] [Google Scholar]

180. Kyle UG, Pichard C, Rochat T, Slosman DO, Fitting JW, Thiebaud D. New bioelectrical impedance formula for patients with respiratory insufficiency: comparison to dual-energy X-ray absorptiometry. Eur Respir J. 1998;12:960–966. [PubMed] [Google Scholar]

181. Haderslev KV, Staun M. Comparison of dual-energy X-ray absorptiometry to four other methods to determine body composition in underweight patients with chronic gastrointestinal disease. Metabolism. 2000;49:360–366. [PubMed] [Google Scholar]

182. Levitt DG, Beckman LM, Mager JR, Valentine B, Sibley SD, Beckman TR, Kellogg TA, Ikramuddin S, Earthman CP. Comparison of DXA and water measurements of body fat following gastric bypass surgery and a physiological model of body water, fat, and muscle composition. J Appl Physiol (1985) 2010;109:786–795. [PMC free article] [PubMed] [Google Scholar]

183. Nwosu AC, Mayland CR, Mason SR, Khodabukus AF, Varro A, Ellershaw JE. Hydration in advanced cancer: can bioelectrical impedance analysis improve the evidence base? A systematic review of the literature. J Pain Symptom Manage. 2013;46:433–446.e6. [PubMed] [Google Scholar]

184. Kose SB, Hur E, Magden K, Yildiz G, Colak D, Kucuk E, Toka B, Kucuk H, Yildirim I, Kokturk F, et al. Bioimpedance spectroscopy for the differential diagnosis of hyponatremia. Ren Fail. 2015;37:947–950. [PubMed] [Google Scholar]

185. Heavens KR, Charkoudian N, O’Brien C, Kenefick RW, Cheuvront SN. Noninvasive assessment of extracellular and intracellular dehydration in healthy humans using the resistance-reactance-score graph method. Am J Clin Nutr. 2016;103:724–729. [PubMed] [Google Scholar]

186. Roos AN, Westendorp RG, Brand R, Souverijn JH, Frölich M, Meinders AE. Predictive value of tetrapolar body impedance measurements for hydration status in critically ill patients. Intensive Care Med. 1995;21:125–131. [PubMed] [Google Scholar]

187. Malbrain ML, Huygh J, Dabrowski W, De Waele JJ, Staelens A, Wauters J. The use of bio-electrical impedance analysis (BIA) to guide fluid management, resuscitation and deresuscitation in critically ill patients: a bench-to-bedside review. Anaesthesiol Intensive Ther. 2014;46:381–391. [PubMed] [Google Scholar]

188. Baumgartner RN, Heymsfield SB, Roche AF. Human body composition and the epidemiology of chronic disease. Obes Res. 1995;3:73–95. [PubMed] [Google Scholar]

189. Roubenoff R. Sarcopenic obesity: the confluence of two epidemics. Obes Res. 2004;12:887–888. [PubMed] [Google Scholar]

190. Wang Z, Heymsfield SB, Pi-Sunyer FX, Gallagher D, Pierson RN Jr. Body composition analysis: Cellular level modeling of body component ratios. Int J Body Compos Res. 2008;6:173–184. [PMC free article] [PubMed] [Google Scholar]

191. Price WF, Hazelrig JB, Kreisberg RA, Meador CK. Reproducibility of body composition measurements in a single individual. J Lab Clin Med. 1969;74:557–563. [PubMed] [Google Scholar]

192. Burke BJ, Staddon GE. The precision of a modern method for body compartment measurements using multiple isotopes. Clin Chim Acta. 1981;117:85–95. [PubMed] [Google Scholar]

193. Silva AM, Heymsfield SB, Gallagher D, Albu J, Pi-Sunyer XF, Pierson RN Jr, Wang J, Heshka S, Sardinha LB, Wang Z. Evaluation of between-methods agreement of extracellular water measurements in adults and children. Am J Clin Nutr. 2008;88:315–323. [PMC free article] [PubMed] [Google Scholar]

194. Cunningham JN Jr, Carter NW, Rector FC Jr, Seldin DW. Resting transmembrane potential difference of skeletal muscle in normal subjects and severely ill patients. J Clin Invest. 1971;50:49–59. [PMC free article] [PubMed] [Google Scholar]

195. Schober O, Lehr L, Hundeshagen H. Bromide space, total body water, and sick cell syndrome. Eur J Nucl Med. 1982;7:14–15. [PubMed] [Google Scholar]

196. Cotton JR, Woodard T, Carter NW, Knochel JP. Resting skeletal muscle membrane potential as an index of uremic toxicity. A proposed new method to assess adequacy of hemodialysis. J Clin Invest. 1979;63:501–506. [PMC free article] [PubMed] [Google Scholar]

197. Kooman JP, Cox-Reijven PL, Van der Sande FM, Van den Ham EC, Leunissen KM. Assessment of body composition in ESRF. Kidney Int. 2001;59:383–384. [PubMed] [Google Scholar]

198. Chan C, McIntyre C, Smith D, Spanel P, Davies SJ. Combining near-subject absolute and relative measures of longitudinal hydration in hemodialysis. Clin J Am Soc Nephrol. 2009;4:1791–1798. [PMC free article] [PubMed] [Google Scholar]

199. Silva AM, Wang J, Pierson RN Jr, Wang Z, Heymsfield SB, Sardinha LB, Heshka S. Extracellular water: greater expansion with age in African Americans. J Appl Physiol (1985) 2005;99:261–267. [PubMed] [Google Scholar]

200. Tengvall M, Ellegård L, Malmros V, Bosaeus N, Lissner L, Bosaeus I. Body composition in the elderly: reference values and bioelectrical impedance spectroscopy to predict total body skeletal muscle mass. Clin Nutr. 2009;28:52–58. [PubMed] [Google Scholar]

201. Peters AM, Seshadri N, Neilly MD, Perry L, Hooker CA, Howard B, Sobnack R, Irwin A, Dave S, Snelling H, et al. Higher extracellular fluid volume in women is concealed by scaling to body surface area. Scand J Clin Lab Invest. 2013;73:546–552. [PubMed] [Google Scholar]

202. Malczyk E, Dzięgielewska-Gęsiak S, Fatyga E, Ziółko E, Kokot T, Muc-Wierzgon M. Body composition in healthy older persons: role of the ratio of extracellular/total body water. J Biol Regul Homeost Agents. 2016;30:767–772. [PubMed] [Google Scholar]

203. Avila ML, Ward LC, Feldman BM, Montoya MI, Stinson J, Kiss A, Brandão LR. Normal values for segmental bioimpedance spectroscopy in pediatric patients. PLoS One. 2015;10:e0126268. [PMC free article] [PubMed] [Google Scholar]

204. Shepherd JA, Heymsfield SB, Norris SA, Redman LM, Ward LC, Slater C. Measuring body composition in low-resource settings across the life course. Obesity (Silver Spring) 2016;24:985–988. [PMC free article] [PubMed] [Google Scholar]

205. Moore FD, Haley HB, Bering EA Jr, Brooks L, Edelman IS. Further observations on total body water. II. Changes of body composition in disease. Surg Gynecol Obstet. 1952;95:155–180. [PubMed] [Google Scholar]

206. Lee J, de Louw E, Niemi M, Nelson R, Mark RG, Celi LA, Mukamal KJ, Danziger J. Association between fluid balance and survival in critically ill patients. J Intern Med. 2015;277:468–477. [PMC free article] [PubMed] [Google Scholar]

207. Kalantari K, Chang JN, Ronco C, Rosner MH. Assessment of intravascular volume status and volume responsiveness in critically ill patients. Kidney Int. 2013;83:1017–1028. [PubMed] [Google Scholar]

208. Sherlock S. Diseases of the liver and the biliary system. 4th ed, 2nd printing. Oxford: Blackwell; 1969. p. chapter 7, 151. [Google Scholar]

209. Peters JP. The role of sodium in the production of edema. N Engl J Med. 1948;239:353–362. [PubMed] [Google Scholar]

210. Schrier RW. Decreased effective blood volume in edematous disorders: what does this mean? J Am Soc Nephrol. 2007;18:2028–2031. [PubMed] [Google Scholar]

211. Schalekamp MA, Man in’t Veld AJ, Wenting GJ. The second Sir George Pickering memorial lecture. What regulates whole body autoregulation? Clinical observations. J Hypertens. 1985;3:97–108. [PubMed] [Google Scholar]

212. Blake TR. A theoretical view of interstitial fluid pressure--volume measurements. Microvasc Res. 1989;37:178–187. [PubMed] [Google Scholar]

213. Schrier RW. Body fluid volume regulation in health and disease: a unifying hypothesis. Ann Intern Med. 1990;113:155–159. [PubMed] [Google Scholar]

214. Kang KW, Heo ST, Han SH, Park YG, Park HS. Systemic capillary leak syndrome induced by influenza type A infection. Clin Exp Emerg Med. 2014;1:126–129. [PMC free article] [PubMed] [Google Scholar]

215. Norsk P, Epstein M. Manned space flight and the kidney. Am J Nephrol. 1991;11:81–97. [PubMed] [Google Scholar]

216. Smith SM, Krauhs JM, Leach CS. Regulation of body fluid volume and electrolyte concentrations in spaceflight. Adv Space Biol Med. 1997;6:123–165. [PubMed] [Google Scholar]

217. Drummer C, Gerzer R, Baisch F, Heer M. Body fluid regulation in micro-gravity differs from that on Earth: an overview. Pflugers Arch. 2000;441:R66–R72. [PubMed] [Google Scholar]

218. Epstein M. Renal effects of head-out water immersion in man: implications for an understanding of volume homeostasis. Physiol Rev. 1978;58:529–581. [PubMed] [Google Scholar]

219. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–2647. [PubMed] [Google Scholar]

220. Levy EM, Viscoli CM, Horwitz RI. The effect of acute renal failure on mortality. A cohort analysis. JAMA. 1996;275:1489–1494. [PubMed] [Google Scholar]

221. Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: A systematic review. Kidney Int. 2008;73:538–546. [PubMed] [Google Scholar]

222. Joannidis M, Druml W, Forni LG, Groeneveld AB, Honore P, Oudemans-van Straaten HM, Ronco C, Schetz MR, Woittiez AJ; Critical Care Nephrology Working Group of the European Society of Intensive Care Medicine. Prevention of acute kidney injury and protection of renal function in the intensive care unit. Expert opinion of the Working Group for Nephrology, ESICM. Intensive Care Med. 2010;36:392–411. [PubMed] [Google Scholar]

223. Matejovic M, Ince C, Chawla LS, Blantz R, Molitoris BA, Rosner MH, Okusa MD, Kellum JA, Ronco C; ADQI XIII Work Group. Renal Hemodynamics in AKI: In Search of New Treatment Targets. J Am Soc Nephrol. 2016;27:49–58. [PMC free article] [PubMed] [Google Scholar]

224. Rosner MH, Ostermann M, Murugan R, Prowle JR, Ronco C, Kellum JA, Mythen MG, Shaw AD; ADQI XII Investigators Group. Indications and management of mechanical fluid removal in critical illness. Br J Anaesth. 2014;113:764–771. [PubMed] [Google Scholar]

225. Jacob R, Dierberger B, Kissling G. Functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions. Eur Heart J. 1992;13 Suppl E:7–14. [PubMed] [Google Scholar]

226. Sergi G, Lupoli L, Volpato S, Bertani R, Coin A, Perissinotto E, Calliari I, Inelmen EM, Busetto L, Enzi G. Body fluid distribution in elderly subjects with congestive heart failure. Ann Clin Lab Sci. 2004;34:416–422. [PubMed] [Google Scholar]

227. Friedberg CK. Fluid and electrolyte disturbances in heart failure and their treatment. Circulation. 1957;16:437–460. [PubMed] [Google Scholar]

228. Gheorghiade M, Filippatos G, De Luca L, Burnett J. Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. Am J Med. 2006;119:S3–S10. [PubMed] [Google Scholar]

229. Schrier RW, Bansal S. Pulmonary hypertension, right ventricular failure, and kidney: different from left ventricular failure? Clin J Am Soc Nephrol. 2008;3:1232–1237. [PMC free article] [PubMed] [Google Scholar]

230. Stevenson LW; ESCAPE and COMPASS trials. Theodore E. Woodward Award: Coming in out of the rain. Relieving congestion in heart failure. Trans Am Clin Climatol Assoc. 2009;120:177–187. [PMC free article] [PubMed] [Google Scholar]

231. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Card Fail. 2017;23:628–651. [PubMed] [Google Scholar]

232. Valle R, Aspromonte N, Milani L, Peacock FW, Maisel AS, Santini M, Ronco C. Optimizing fluid management in patients with acute decompensated heart failure (ADHF): the emerging role of combined measurement of body hydration status and brain natriuretic peptide (BNP) levels. Heart Fail Rev. 2011;16:519–529. [PMC free article] [PubMed] [Google Scholar]

233. Di Somma S, De Berardinis B, Bongiovanni C, Marino R, Ferri E, Alfei B. Use of BNP and bioimpedance to drive therapy in heart failure patients. Congest Heart Fail. 2010;16 Suppl 1:S56–S61. [PubMed] [Google Scholar]

234. Brachmann J, Böhm M, Rybak K, Klein G, Butter C, Klemm H, Schomburg R, Siebermair J, Israel C, Sinha AM, et al. Fluid status monitoring with a wireless network to reduce cardiovascular-related hospitalizations and mortality in heart failure: rationale and design of the OptiLink HF Study (Optimization of Heart Failure Management using OptiVol Fluid Status Monitoring and CareLink) Eur J Heart Fail. 2011;13:796–804. [PMC free article] [PubMed] [Google Scholar]

235. Böhm M, Drexler H, Oswald H, Rybak K, Bosch R, Butter C, Klein G, Gerritse B, Monteiro J, Israel C, et al. Fluid status telemedicine alerts for heart failure: a randomized controlled trial. Eur Heart J. 2016;37:3154–3163. [PubMed] [Google Scholar]

236. Ronco C, Kaushik M, Valle R, Aspromonte N, Peacock WF 4th. Diagnosis and management of fluid overload in heart failure and cardio-renal syndrome: the “5B” approach. Semin Nephrol. 2012;32:129–141. [PubMed] [Google Scholar]

237. Jambrik Z, Monti S, Coppola V, Agricola E, Mottola G, Miniati M, Picano E. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol. 2004;93:1265–1270. [PubMed] [Google Scholar]

238. Colin-Ramirez E, Ezekowitz JA. Salt in the diet in patients with heart failure: what to recommend. Curr Opin Cardiol. 2016;31:196–203. [PubMed] [Google Scholar]

239. Nijst P, Verbrugge FH, Grieten L, Dupont M, Steels P, Tang WHW, Mullens W. The pathophysiological role of interstitial sodium in heart failure. J Am Coll Cardiol. 2015;65:378–388. [PubMed] [Google Scholar]

240. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Rev Esp Cardiol (Engl Ed) 2016;69:1167. [PubMed] [Google Scholar]

241. Bichet DG, Groves BG, Schrier RW. Effect of head-out water immersion on hepatorenal syndrome. Am J Kidney Dis. 1984;3:258–263. [PubMed] [Google Scholar]

242. Durand F, Graupera I, Ginès P, Olson JC, Nadim MK. Pathogenesis of Hepatorenal Syndrome: Implications for Therapy. Am J Kidney Dis. 2016;67:318–328. [PubMed] [Google Scholar]

243. Rzouq F, Alahdab F, Olyaee M. New insight into volume overload and hepatorenal syndrome in cirrhosis, “the hepatorenal reflex hypothesis” Am J Med Sci. 2014;348:244–248. [PubMed] [Google Scholar]

244. Ginès P, Schrier RW. Renal failure in cirrhosis. N Engl J Med. 2009;361:1279–1290. [PubMed] [Google Scholar]

245. Licata A, Mazzola A, Ingrassia D, Calvaruso V, Cammà C, Craxì A. Clinical implications of the hyperdynamic syndrome in cirrhosis. Eur J Intern Med. 2014;25:795–802. [PubMed] [Google Scholar]

246. Tsiaoussis GI, Assimakopoulos SF, Tsamandas AC, Triantos CK, Thomopoulos KC. Intestinal barrier dysfunction in cirrhosis: Current concepts in pathophysiology and clinical implications. World J Hepatol. 2015;7:2058–2068. [PMC free article] [PubMed] [Google Scholar]

247. Acevedo JG, Cramp ME. Hepatorenal syndrome: Update on diagnosis and therapy. World J Hepatol. 2017;9:293–299. [PMC free article] [PubMed] [Google Scholar]

248. Schrier RW, Shchekochikhin D, Ginès P. Renal failure in cirrhosis: prerenal azotemia, hepatorenal syndrome and acute tubular necrosis. Nephrol Dial Transplant. 2012;27:2625–2628. [PubMed] [Google Scholar]

249. Møller S, Bendtsen F. Cirrhotic Multiorgan Syndrome. Dig Dis Sci. 2015;60:3209–3225. [PubMed] [Google Scholar]

250. Nazar A, Guevara M, Sitges M, Terra C, Solà E, Guigou C, Arroyo V, Ginès P. LEFT ventricular function assessed by echocardiography in cirrhosis: relationship to systemic hemodynamics and renal dysfunction. J Hepatol. 2013;58:51–57. [PubMed] [Google Scholar]

251. Adebayo D, Morabito V, Davenport A, Jalan R. Renal dysfunction in cirrhosis is not just a vasomotor nephropathy. Kidney Int. 2015;87:509–515. [PMC free article] [PubMed] [Google Scholar]

252. Allegretti AS, Ortiz G, Wenger J, Deferio JJ, Wibecan J, Kalim S, Tamez H, Chung RT, Karumanchi SA, Thadhani RI. Prognosis of Acute Kidney Injury and Hepatorenal Syndrome in Patients with Cirrhosis: A Prospective Cohort Study. Int J Nephrol. 2015;2015:108139. [PMC free article] [PubMed] [Google Scholar]

253. Ariza X, Solà E, Elia C, Barreto R, Moreira R, Morales-Ruiz M, Graupera I, Rodríguez E, Huelin P, Solé C, et al. Analysis of a urinary biomarker panel for clinical outcomes assessment in cirrhosis. PLoS One. 2015;10:e0128145. [PMC free article] [PubMed] [Google Scholar]

254. Huggins JT, Doelken P, Walters C, Rockey DC. Point-of-Care Echocardiography Improves Assessment of Volume Status in Cirrhosis and Hepatorenal Syndrome. Am J Med Sci. 2015 Epub ahead of print. [PubMed] [Google Scholar]

256. Ge PS, Runyon BA. Treatment of Patients with Cirrhosis. N Engl J Med. 2016;375:767–777. [PubMed] [Google Scholar]

257. Arab JP, Claro JC, Arancibia JP, Contreras J, Gómez F, Muñoz C, Nazal L, Roessler E, Wolff R, Arrese M, et al. Therapeutic alternatives for the treatment of type 1 hepatorenal syndrome: A Delphi technique-based consensus. World J Hepatol. 2016;8:1075–1086. [PMC free article] [PubMed] [Google Scholar]

258. Facciorusso A, Chandar AK, Murad MH, Prokop LJ, Muscatiello N, Kamath PS, Singh S. Comparative efficacy of pharmacological strategies for management of type 1 hepatorenal syndrome: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol. 2017;2:94–102. [PubMed] [Google Scholar]

259. Boyer TD, Sanyal AJ, Wong F, Frederick RT, Lake JR, O’Leary JG, Ganger D, Jamil K, Pappas SC; REVERSE Study Investigators. Terlipressin Plus Albumin Is More Effective Than Albumin Alone in Improving Renal Function in Patients With Cirrhosis and Hepatorenal Syndrome Type 1. Gastroenterology. 2016;150:1579–1589.e2. [PubMed] [Google Scholar]

260. Nassar Junior AP, Farias AQ, D’ Albuquerque LA, Carrilho FJ, Malbouisson LM. Terlipressin versus norepinephrine in the treatment of hepatorenal syndrome: a systematic review and meta-analysis. PLoS One. 2014;9:e107466. [PMC free article] [PubMed] [Google Scholar]

261. Afinogenova Y, Tapper EB. The efficacy and safety profile of albumin administration for patients with cirrhosis at high risk of hepatorenal syndrome is dose dependent. Gastroenterol Rep (Oxf) 2015;3:216–221. [PMC free article] [PubMed] [Google Scholar]

262. Valerio C, Theocharidou E, Davenport A, Agarwal B. Human albumin solution for patients with cirrhosis and acute on chronic liver failure: Beyond simple volume expansion. World J Hepatol. 2016;8:345–354. [PMC free article] [PubMed] [Google Scholar]

263. Yersin B, Burnier M, Magnenat P. Improvement of renal failure with repeated head-out water immersions in patients with hepatorenal syndrome associated with alcoholic hepatitis. Am J Nephrol. 1995;15:260–265. [PubMed] [Google Scholar]

264. Ge PS, Runyon BA. Role of plasma BNP in patients with ascites: advantages and pitfalls. Hepatology. 2014;59:751–753. [PubMed] [Google Scholar]

265. Madden AM, Morgan MY. The potential role of dual-energy X-ray absorptiometry in the assessment of body composition in cirrhotic patients. Nutrition. 1997;13:40–45. [PubMed] [Google Scholar]

266. Schloerb PR, Forster J, Delcore R, Kindscher JD. Bioelectrical impedance in the clinical evaluation of liver disease. Am J Clin Nutr. 1996;64:510S–514S. [PubMed] [Google Scholar]

267. Panella C, Guglielmi FW, Mastronuzzi T, Francavilla A. Whole-body and segmental bioelectrical parameters in chronic liver disease: effect of gender and disease stages. Hepatology. 1995;21:352–358. [PubMed] [Google Scholar]

268. Davenport A, Argawal B, Wright G, Mantzoukis K, Dimitrova R, Davar J, Vasianopoulou P, Burroughs AK. Can non-invasive measurements aid clinical assessment of volume in patients with cirrhosis? World J Hepatol. 2013;5:433–438. [PMC free article] [PubMed] [Google Scholar]

269. Imamura T, Kinugawa K. Prognostic Impacts of Hyponatremia, Renal Dysfunction, and High-Dose Diuretics During a 10-Year Study Period in 4,087 Japanese Heart Failure Patients. Int Heart J. 2016;57:657–658. [PubMed] [Google Scholar]

270. Price JF, Kantor PF, Shaddy RE, Rossano JW, Goldberg JF, Hagan J, Humlicek TJ, Cabrera AG, Jeewa A, Denfield SW, et al. Incidence, Severity, and Association With Adverse Outcome of Hyponatremia in Children Hospitalized With Heart Failure. Am J Cardiol. 2016;118:1006–1010. [PubMed] [Google Scholar]

271. Heuman DM, Abou-Assi SG, Habib A, Williams LM, Stravitz RT, Sanyal AJ, Fisher RA, Mihas AA. Persistent ascites and low serum sodium identify patients with cirrhosis and low MELD scores who are at high risk for early death. Hepatology. 2004;40:802–810. [PubMed] [Google Scholar]

272. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. [PMC free article] [PubMed] [Google Scholar]

273. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–851. [PubMed] [Google Scholar]

274. Schrier RW, Wang W. Acute renal failure and sepsis. N Engl J Med. 2004;351:159–169. [PubMed] [Google Scholar]

275. Swaminathan S, Rosner MH, Okusa MD. Emerging therapeutic targets of sepsis-associated acute kidney injury. Semin Nephrol. 2015;35:38–54. [PMC free article] [PubMed] [Google Scholar]

276. Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–1608. [PubMed] [Google Scholar]

277. Hoover DB, Ozment TR, Wondergem R, Li C, Williams DL. Impaired heart rate regulation and depression of cardiac chronotropic and dromotropic function in polymicrobial sepsis. Shock. 2015;43:185–191. [PMC free article] [PubMed] [Google Scholar]

278. Celes MR, Prado CM, Rossi MA. Sepsis: going to the heart of the matter. Pathobiology. 2013;80:70–86. [PubMed] [Google Scholar]

279. Smeding L, Plötz FB, Groeneveld AB, Kneyber MC. Structural changes of the heart during severe sepsis or septic shock. Shock. 2012;37:449–456. [PubMed] [Google Scholar]

280. Gao M, Wang X, Zhang X, Ha T, Ma H, Liu L, Kalbfleisch JH, Gao X, Kao RL, Williams DL, et al. Attenuation of Cardiac Dysfunction in Polymicrobial Sepsis by MicroRNA-146a Is Mediated via Targeting of IRAK1 and TRAF6 Expression. J Immunol. 2015;195:672–682. [PMC free article] [PubMed] [Google Scholar]

281. Ishihara H, Matsui A, Muraoka M, Tanabe T, Tsubo T, Matsuki A. Detection of capillary protein leakage by indocyanine green and glucose dilutions in septic patients. Crit Care Med. 2000;28:620–626. [PubMed] [Google Scholar]

282. Opal SM, van der Poll T. Endothelial barrier dysfunction in septic shock. J Intern Med. 2015;277:277–293. [PubMed] [Google Scholar]

283. Ince C, Mayeux PR, Nguyen T, Gomez H, Kellum JA, Ospina-Tascón GA, Hernandez G, Murray P, De Backer D; ADQI XIV Workgroup. The endothelium in sepsis. Shock. 2016;45:259–270. [PMC free article] [PubMed] [Google Scholar]

284. Sánchez M, Jiménez-Lendínez M, Cidoncha M, Asensio MJ, Herrerot E, Collado A, Santacruz M. Comparison of fluid compartments and fluid responsiveness in septic and non-septic patients. Anaesth Intensive Care. 2011;39:1022–1029. [PubMed] [Google Scholar]

285. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. [PubMed] [Google Scholar]

286. ARISE Investigators; ANZICS Clinical Trials Group, Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, Higgins AM, Holdgate A, Howe BD, Webb SA, Williams P. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–1506. [PubMed] [Google Scholar]

287. ProCESS Investigators, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–1693. [PMC free article] [PubMed] [Google Scholar]

288. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, Jahan R, Harvey SE, Bell D, Bion JF, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–1311. [PubMed] [Google Scholar]

289. Angus DC, Barnato AE, Bell D, Bellomo R, Chong CR, Coats TJ, Davies A, Delaney A, Harrison DA, Holdgate A, et al. A systematic review and meta-analysis of early goal-directed therapy for septic shock: the ARISE, ProCESS and ProMISe Investigators. Intensive Care Med. 2015;41:1549–1560. [PubMed] [Google Scholar]

290. Cronhjort M, Hjortrup PB, Holst LB, Joelsson-Alm E, Mårtensson J, Svensen C, Perner A. Association between fluid balance and mortality in patients with septic shock: a post hoc analysis of the TRISS trial. Acta Anaesthesiol Scand. 2016;60:925–933. [PubMed] [Google Scholar]

291. Marik PE, Linde-Zwirble WT, Bittner EA, Sahatjian J, Hansell D. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43:625–632. [PubMed] [Google Scholar]

292. Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, Lemeshow S, Osborn T, Terry KM, Levy MM. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N Engl J Med. 2017;376:2235–2244. [PMC free article] [PubMed] [Google Scholar]

293. Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, Mira JP, Dequin PF, Gergaud S, Weiss N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–1593. [PubMed] [Google Scholar]

294. Holst LB, Haase N, Wetterslev J, Wernerman J, Guttormsen AB, Karlsson S, Johansson PI, Aneman A, Vang ML, Winding R, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014;371:1381–1391. [PubMed] [Google Scholar]

295. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45:486–552. [PubMed] [Google Scholar]

296. Manzone TA, Dam HQ, Soltis D, Sagar VV. Blood volume analysis: a new technique and new clinical interest reinvigorate a classic study. J Nucl Med Technol. 2007;35:55–63; quiz 77, 79. [PubMed] [Google Scholar]

297. Yu M, Pei K, Moran S, Edwards KD, Domingo S, Steinemann S, Ghows M, Takiguchi S, Tan A, Lurie F, et al. A prospective randomized trial using blood volume analysis in addition to pulmonary artery catheter, compared with pulmonary artery catheter alone, to guide shock resuscitation in critically ill surgical patients. Shock. 2011;35:220–228. [PubMed] [Google Scholar]

299. Cameron JS. The nephrotic syndrome and its complications. Am J Kidney Dis. 1987;10:157–171. [PubMed] [Google Scholar]

300. Schrier RW. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (1) N Engl J Med. 1988;319:1065–1072. [PubMed] [Google Scholar]

301. Palmer BF. Nephrotic edema--pathogenesis and treatment. Am J Med Sci. 1993;306:53–67. [PubMed] [Google Scholar]

302. Brown E, Hopper J Jr, Wennesland R. Blood volume and its regulation. Annu Rev Physiol. 1957;19:231–254. [PubMed] [Google Scholar]

303. Rascher W, Tulassay T, Seyberth HW, Himbert U, Lang U, Schärer K. Diuretic and hormonal responses to head-out water immersion in nephrotic syndrome. J Pediatr. 1986;109:609–614. [PubMed] [Google Scholar]

304. Noddeland H, Riisnes SM, Fadnes HO. Interstitial fluid colloid osmotic and hydrostatic pressures in subcutaneous tissue of patients with nephrotic syndrome. Scand J Clin Lab Invest. 1982;42:139–146. [PubMed] [Google Scholar]

305. Meltzer JI, Keim HJ, Laragh JH, Sealey JE, Jan KM, Chien S. Nephrotic syndrome: vasoconstriction and hypervolemic types indicated by renin-sodium profiling. Ann Intern Med. 1979;91:688–696. [PubMed] [Google Scholar]

306. Joles JA, Willekes-Koolschijn N, Braam B, Kortlandt W, Koomans HA, Dorhout Mees EJ. Colloid osmotic pressure in young analbuminemic rats. Am J Physiol. 1989;257:F23–F28. [PubMed] [Google Scholar]

307. Koot BG, Houwen R, Pot DJ, Nauta J. Congenital analbuminaemia: biochemical and clinical implications. A case report and literature review. Eur J Pediatr. 2004;163:664–670. [PubMed] [Google Scholar]

308. Dorhout EJ, Roos JC, Boer P, Yoe OH, Simatupang TA. Observations on edema formation in the nephrotic syndrome in adults with minimal lesions. Am J Med. 1979;67:378–384. [PubMed] [Google Scholar]

309. Koomans HA, Geers AB, vd Meiracker AH, Roos JC, Boer P, Dorhout Mees EJ. Effects of plasma volume expansion on renal salt handling in patients with the nephrotic syndrome. Am J Nephrol. 1984;4:227–234. [PubMed] [Google Scholar]

310. Brown EA, Markandu ND, Sagnella GA, Jones BE, MacGregor GA. Lack of effect of captopril on the sodium retention of the nephrotic syndrome. Nephron. 1984;37:43–48. [PubMed] [Google Scholar]

311. de Seigneux S, Kim SW, Hemmingsen SC, Frøkiaer J, Nielsen S. Increased expression but not targeting of ENaC in adrenalectomized rats with PAN-induced nephrotic syndrome. Am J Physiol Renal Physiol. 2006;291:F208–F217. [PubMed] [Google Scholar]

312. Oliver WJ. Physiologic responses associated with steroid-induced diuresis in the nephrotic syndrome. J Lab Clin Med. 1963;62:449–464. [PubMed] [Google Scholar]

313. Humphreys MH, Valentin JP, Qiu C, Ying WZ, Muldowney WP, Gardner DG. Underfill and overflow revisited: mechanisms of nephrotic edema. Trans Am Clin Climatol Assoc. 1993;104:47–59; discussion 59-60. [PMC free article] [PubMed] [Google Scholar]

314. Schrier RW, Fassett RG. A critique of the overfill hypothesis of sodium and water retention in the nephrotic syndrome. Kidney Int. 1998;53:1111–1117. [PubMed] [Google Scholar]

315. Ichikawa I, Rennke HG, Hoyer JR, Badr KF, Schor N, Troy JL, Lechene CP, Brenner BM. Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. J Clin Invest. 1983;71:91–103. [PMC free article] [PubMed] [Google Scholar]

316. Kim SW, Wang W, Nielsen J, Praetorius J, Kwon TH, Knepper MA, Frøkiaer J, Nielsen S. Increased expression and apical targeting of renal ENaC subunits in puromycin aminonucleoside-induced nephrotic syndrome in rats. Am J Physiol Renal Physiol. 2004;286:F922–F935. [PubMed] [Google Scholar]

317. Deschênes G, Gonin S, Zolty E, Cheval L, Rousselot M, Martin PY, Verbavatz JM, Féraille E, Doucet A. Increased synthesis and avp unresponsiveness of Na,K-ATPase in collecting duct from nephrotic rats. J Am Soc Nephrol. 2001;12:2241–2252. [PubMed] [Google Scholar]

318. Stæhr M, Buhl KB, Andersen RF, Svenningsen P, Nielsen F, Hinrichs GR, Bistrup C, Jensen BL. Aberrant glomerular filtration of urokinase-type plasminogen activator in nephrotic syndrome leads to amiloride-sensitive plasminogen activation in urine. Am J Physiol Renal Physiol. 2015;309:F235–F241. [PubMed] [Google Scholar]

319. Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, Stubbe J, Jensen ON, Thiesson HC, Uhrenholt TR, et al. Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol. 2009;20:299–310. [PMC free article] [PubMed] [Google Scholar]

320. Rondon-Berrios H. New insights in the pathophysiology of oedema in nephrotic syndrome. Nefrologia. 2011;31:148–154. [PubMed] [Google Scholar]

321. Siddall EC, Radhakrishnan J. The pathophysiology of edema formation in the nephrotic syndrome. Kidney Int. 2012;82:635–642. [PubMed] [Google Scholar]

322. Ray EC, Rondon-Berrios H, Boyd CR, Kleyman TR. Sodium retention and volume expansion in nephrotic syndrome: implications for hypertension. Adv Chronic Kidney Dis. 2015;22:179–184. [PMC free article] [PubMed] [Google Scholar]

323. Macé C, Chugh SS. Nephrotic syndrome: components, connections, and angiopoietin-like 4-related therapeutics. J Am Soc Nephrol. 2014;25:2393–2398. [PMC free article] [PubMed] [Google Scholar]

324. Bozzetto S, Piccoli A, Montini G. Bioelectrical impedance vector analysis to evaluate relative hydration status. Pediatr Nephrol. 2010;25:329–334. [PubMed] [Google Scholar]

325. Jiang F, Bo Y, Cui T, Zhou Y, Li Z, Ma L, Bi Z. Estimating the hydration status in nephrotic patients by leg electrical resistivity measuring method. Nephrology (Carlton) 2010;15:476–479. [PubMed] [Google Scholar]

326. Özdemir K, Mir MS, Dinçel N, Bozabali S, Kaplan Bulut İ, Yilmaz E, Sözeri B. Bioimpedance for assessing volume status in children with nephrotic syndrome. Turk J Med Sci. 2015;45:339–344. [PubMed] [Google Scholar]

What is primarily responsible for carrying fluids with nutrients and wastes on a random basis throughout the body quizlet?

What is primarily responsible for carrying fluids with nutrients and wastes on a random basis throughout the body? The blood and lymph are the main media for transporting nutrients and wastes in the body.

In which compartment of the body is the majority of water stored?

The body's fluid separates into two main compartments: Intracellular fluid volume (ICFV) and extracellular fluid volume (ECFV). Of the 42L of water found in the body, two-thirds of it is within the intracellular fluid (ICF) space, which equates to 28L.

What is fluid balance in nursing?

Fluid balance is a term used to describe the balance of input and output of fluids in the body, to allow metabolic processes to function properly.

What is intravascular fluid?

Intravascular fluid is whole blood volume and also includes red blood cells, white blood cells, plasma, and platelets. Intravascular fluid is the most important component of the body's overall fluid balance.