Which medication may be ordered to relieve discomfort associated with a urinary tract infection?

Medication Summary

Antibiotics are used to treat urinary tract infection (UTI) and, in select patients, to prevent recurrence. Avoid nephrotoxic drugs whenever possible. On occasion, analgesic therapy may be used to provide relief because of voiding symptoms.

Start antibiotics after performing urinalysis and obtaining a urine specimen for culture in patients with UTI. A 7- to 10-day course of antibiotics is recommended, even for an uncomplicated infection. Short-course treatments should be reserved for nontoxic-appearing adolescent girls with UTI. Be aware of increasing rates of antibiotic resistance and the need to choose antibiotic therapy accordingly.

Empiric antibiotics should be chosen for coverage of the most common uropathogens, namely Escherichia coli and Enterococcus, Proteus, and Klebsiella species. Oral antibiotics are adequate therapy for febrile UTIs in young infants and children.

The possibility of antibiotic resistance must be considered when choosing empiric therapy, especially with ampicillin. Knowledge of the local antibiotic resistance helps in guiding antibiotic choice.

A study by Bryce et al that reviewed studies investigating the prevalence of antibiotic resistance in UTI caused by E. coli in children found that the prevalence of resistance is high, particularly in countries outside the Organization for Economic Co-operation and Development (OECD). Resistance in countries outside the OECD was: 79.8% for ampicillin, 60.3% for co-amoxiclav, 26.8% for ciprofloxacin, and 17.0% for nitrofurantoin. [63]

In a study of 607 children with reflux diagnosed by VCUG after a first or second UTI, the subjects were randomized to antibiotic prophylaxis with TMP-SMX or placebo. The risk of recurrences was reduced by 50% in the treatment group (hazard ratio, 0.50; 95% CI, 0.34-0.74). The risk of renal scarring overall did not differ significantly between the groups over 2 years. Also, the occurrence of a subsequent UTI with a TMP-SMX — resistant organism was significantly increased in the treatment group. The children enrolled were aged 2-71 months, a wider age range than the AAP guidelines currently encompass. [64]

Antibiotics

Class Summary

Antibiotics are used to treat bacterial infections of the urinary tract. Empiric antimicrobial therapy must be comprehensive and should cover all likely pathogens in the context of the clinical setting.

Amoxicillin/clavulanate (Augmentin, Augmentin ES-600, Augmentin XR)

  • View full drug information

This is an oral therapy for infection with susceptible organisms. Amoxicillin inhibits bacterial cell-wall synthesis by binding to penicillin-binding proteins. The addition of clavulanate inhibits beta-lactamase ̶ producing bacteria.

This is a good alternative antibiotic for patients who are allergic to or intolerant of the macrolide class. It is usually well tolerated and is effective against most infectious agents, although it is not effective against Mycoplasma and Legionella species. It has good tissue penetration but does not enter the cerebrospinal fluid (CSF).

For patients over age 3 months, base dosing protocol on amoxicillin content. Because of different amoxicillin/clavulanic acid ratios in the 250-mg tablet (250/125) versus the 250-mg chewable tablet (250/62.5), do not use the 250-mg tablet until the child weighs over 40 kg. The amoxicillin-clavulanate combination is also available as an oral suspension for children. The half-life of the oral form is 1-1.3 hours.

Ampicillin

  • View full drug information

Ampicillin is a parenteral agent used for initial treatment of patients with acute pyelonephritis who have gram-positive cocci in urinary sediment or in whom no organisms are observed in the urine. It is indicated for UTIs caused by E coli and P mirabilis.

Ceftriaxone

  • View full drug information

This third-generation cephalosporin is used for initial parenteral therapy for complicated pyelonephritis in pediatric patients beyond the neonatal period. It is indicated for urinary tract infections caused by E coli, Proteus mirabilis, Morganella morganii, P vulgaris, or K pneumoniae.

Cefotaxime

  • View full drug information

Cefotaxime is a third-generation cephalosporin that is used as initial parenteral therapy for pediatric patients with acute complicated pyelonephritis. It may be used in neonates or jaundiced patients. Dosing every 6-8 hours is required. In infants, a 2- to 8-week regimen also includes ampicillin.

Cephalexin

  • View full drug information

Cephalexin is a first-generation cephalosporin. This is an oral treatment for bacterial UTI and for prevention of infection in infants younger than 6-8 weeks.

Cefixime (Suprax)

  • View full drug information

Cefixime is a third-generation cephalosporin used for oral treatment of acute bacterial UTI. By binding to 1 or more penicillin-binding proteins, it arrests bacterial cell-wall synthesis and inhibits bacterial growth.

Cefpodoxime

  • View full drug information

Cefpodoxime is a third-generation cephalosporin used for oral treatment of acute bacterial UTI. It is indicated for the management of infections caused by susceptible mixed aerobic-anaerobic microorganisms.

Ceftazidime/avibactam (Avycaz)

  • View full drug information

Indicated for complicated urinary tract infections (cUTIs) including pyelonephritis in adult and pediatric patients aged 3 months or older caused by the following susceptible Gram-negative microorganisms: Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Citrobacter freundii complex, Proteus mirabilis, and Pseudomonas aeruginosa.

Ceftolozane/tazobactam (Zerbaxa)

  • View full drug information

Indicated for children aged birth and older with complicated urinary tract infections (cUTI), including pyelonephritis, caused by Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa.

Gentamicin

  • View full drug information

This aminoglycoside is used for initial parenteral therapy in patients with bacterial pyelonephritis who are allergic to cephalosporins. For complicated UTI, it is sometimes used in combination with a cephalosporin.

Tobramycin

  • View full drug information

Tobramycin may be an option for the empiric parenteral treatment of UTI. It is used in skin, bone, and skin-structure infections caused by Staphylococcus aureus, Pseudomonas aeruginosa, and E coli, as well as by Klebsiella, Proteus, and Enterobacter species.

This agent is indicated in the treatment of staphylococcal infections when penicillin or potentially less toxic drugs are contraindicated and when bacterial susceptibility and clinical judgment justify its use. Dosing regimens are numerous and are adjusted on the basis of creatinine clearance (CrCl) and changes in the volume of distribution.

Sulfamethoxazole and trimethoprim (Bactrim, Septra)

  • View full drug information

This is an oral treatment for bacterial UTI and for prevention of reinfection. It is available as an oral tablet or a suspension.

Trimethoprim

  • View full drug information

Trimethoprim is an oral antibiotic used for the prevention of urinary tract infection. It is a dihydrofolate reductase inhibitor that prevents the production of tetrahydrofolic acid in bacteria. It is active in vitro against a broad range of gram-positive and gram-negative bacteria, including uropathogens (eg, Enterobacteriaceae and Staphylococcus saprophyticus).

Resistance is usually mediated by decreased cell permeability or by alterations in the structure or amount of dihydrofolate reductase. Trimethoprim demonstrates synergy with sulfonamides, potentiating inhibition of bacterial tetrahydrofolate production.

Nitrofurantoin (Furadantin, Macrobid, Macrodantin)

  • View full drug information

This is an oral treatment for bacterial infections of the lower urinary tract (cystitis) and for the prevention of reinfection. Nitrofurantoin is a synthetic nitrofuran that interferes with bacterial carbohydrate metabolism by inhibiting acetylcoenzyme A. It is bacteriostatic at low concentrations (5-10 mcg/mL) and is bactericidal at higher concentrations.

Ciprofloxacin (Cipro, Cipro XR)

  • View full drug information

This agent is a fluoroquinolone that inhibits bacterial DNA synthesis and, consequently, growth by inhibiting DNA gyrase and topoisomerases, enzymes that are required for the replication, transcription, and translation of genetic material. Quinolones have broad activity against gram-positive and gram-negative aerobic organisms. Ciprofloxacin has no activity against anaerobes. Continue treatment for at least 2 days (7-14 days typical) after signs and symptoms have disappeared.

This agent is not a drug of first choice in pediatric patients, because of an increased incidence of adverse events, including arthropathy, compared with controls. No data exist for dose adjustments for pediatric patients with renal impairment.

Analgesics, Other

Class Summary

These agents are used to provide relief from voiding symptoms caused by UTIs.

Acetaminophen (Tylenol, Mapap, Cetafen, Acephen)

  • View full drug information

Acetaminophen is a nonopioid systemic analgesic used for moderate voiding discomfort caused by UTI.

Ibuprofen (Motrin, Advil, Caldolor, Ibu, Addaprin)

  • View full drug information

Ibuprofen is a nonsteroidal anti-inflammatory agent that is used to provide symptomatic relief of dysuria.

Analgesics, Urinary

Class Summary

These agents are used to relieve burning, spasticity, and pain during voiding caused by UTIs.

Phenazopyridine (Azo-Standard, Pyridium, Baridium)

  • View full drug information

Phenazopyridine exerts local topical anesthetic or analgesic action on urinary mucosa. It is used for symptomatic relief of pain, burning, urgency, frequency, and other discomforts arising from irritation of the lower urinary tract mucosa caused by infection, trauma, surgery, endoscopic procedures, passage of sounds, or catheters. Its analgesic action may reduce or eliminate the need for systemic analgesics. When used concomitantly with antibiotics for UTI, phenazopyridine should not be used for longer than 2 days.

  1. [Guideline] Subcommittee on Urinary Tract Infection; Steering Committee on Quality Improvement and Management. Urinary Tract Infection: Clinical Practice Guideline for the Diagnosis and Management of the Initial UTI in Febrile Infants and Children 2 to 24 Months. Pediatrics. 2011 Aug 28. [QxMD MEDLINE Link].

  2. Finnell SM, Carroll AE, Downs SM. Technical report—Diagnosis and management of an initial UTI in febrile infants and young children. Pediatrics. 2011 Sep. 128(3):e749-70. [QxMD MEDLINE Link].

  3. Zaffanello M, Malerba G, Cataldi L, Antoniazzi F, Franchini M, Monti E, et al. Genetic risk for recurrent urinary tract infections in humans: a systematic review. J Biomed Biotechnol. 2010. 2010:321082. [QxMD MEDLINE Link]. [Full Text].

  4. Schoen EJ, Colby CJ, Ray GT. Newborn circumcision decreases incidence and costs of urinary tract infections during the first year of life. Pediatrics. 2000 Apr. 105(4 Pt 1):789-93. [QxMD MEDLINE Link].

  5. Shaikh N, Morone NE, Bost JE, Farrell MH. Prevalence of urinary tract infection in childhood: a meta-analysis. Pediatr Infect Dis J. 2008 Apr. 27(4):302-8. [QxMD MEDLINE Link].

  6. Hoberman A, Chao HP, Keller DM, Hickey R, Davis HW, Ellis D. Prevalence of urinary tract infection in febrile infants. J Pediatr. 1993 Jul. 123(1):17-23. [QxMD MEDLINE Link].

  7. Downs SM. Technical report: urinary tract infections in febrile infants and young children. The Urinary Tract Subcommittee of the American Academy of Pediatrics Committee on Quality Improvement. Pediatrics. 1999 Apr. 103(4):e54. [QxMD MEDLINE Link].

  8. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. U.S. renal data system, USRDS 2005 (2005) Annual data report: Atlas of end-stage renal disease in the United States. Available at http://www.usrds.org/atlas05.aspx. Accessed: July 29, 2013.

  9. Harambat J, van Stralen KJ, Kim JJ, Tizard EJ. Epidemiology of chronic kidney disease in children. Pediatr Nephrol. 2012 Mar. 27(3):363-73. [QxMD MEDLINE Link]. [Full Text].

  10. Zorc JJ, Levine DA, Platt SL, Dayan PS, Macias CG, Krief W, et al. Clinical and demographic factors associated with urinary tract infection in young febrile infants. Pediatrics. 2005 Sep. 116(3):644-8. [QxMD MEDLINE Link].

  11. Shaikh N, Morone NE, Lopez J, Chianese J, Sangvai S, D'Amico F, et al. Does this child have a urinary tract infection?. JAMA. 2007 Dec 26. 298(24):2895-904. [QxMD MEDLINE Link].

  12. [Guideline] Committee on Quality Improvement, Subcommittee on Urinary Tract Infection, American Academy of Pediatrics. Practice Parameter: The Diagnosis, Treatment, and Evaluation of the Initial Urinary Tract Infection in Febrile Infants and Young Children. Available at http://aappolicy.aappublications.org/cgi/content/full/pediatrics;103/4/843. Accessed: July 30, 2013.

  13. Prentiss KA, Newby PK, Vinci RJ. Adolescent female with urinary symptoms: a diagnostic challenge for the pediatrician. Pediatr Emerg Care. 2011 Sep. 27(9):789-94. [QxMD MEDLINE Link].

  14. Schroeder AR, Chang PW, Shen MW, Biondi EA, Greenhow TL. Diagnostic accuracy of the urinalysis for urinary tract infection in infants Pediatrics</i>. 2015 Jun. 135 (6):965-71. [QxMD MEDLINE Link].

  15. Laidman J. Dipstick Test Effective Initial Screen for UTI in Infants. Medscape Medical News. May 1 2014. [Full Text].

  16. Glissmeyer EW, Korgenski EK, Wilkes J, et al. Dipstick screening for urinary tract infection in febrile infants. Pediatrics. 2014 Apr 28. [QxMD MEDLINE Link].

  17. Girardet P, Frutiger P, Lang R. Urinary tract infections in pediatric practice. A comparative study of three diagnostic tools: dip-slides, bacterioscopy and leucocyturia. Paediatrician. 1980. 9(5-6):322-37. [QxMD MEDLINE Link].

  18. Goldsmith BM, Campos JM. Comparison of urine dipstick, microscopy, and culture for the detection of bacteriuria in children. Clin Pediatr (Phila). 1990 Apr. 29(4):214-8. [QxMD MEDLINE Link].

  19. Anderson JD, Chambers GK, Johnson HW. Application of a leukocyte and nitrite urine test strip to the management of children with neurogenic bladder. Diagn Microbiol Infect Dis. 1993 Jul. 17(1):29-33. [QxMD MEDLINE Link].

  20. Craver RD, Abermanis JG. Dipstick only urinalysis screen for the pediatric emergency room. Pediatr Nephrol. 1997 Jun. 11(3):331-3. [QxMD MEDLINE Link].

  21. Shaw KN, McGowan KL, Gorelick MH, Schwartz JS. Screening for urinary tract infection in infants in the emergency department: which test is best?. Pediatrics. 1998 Jun. 101(6):E1. [QxMD MEDLINE Link].

  22. Anad FY. A simple method for selecting urine samples that need culturing. Ann Saudi Med. 2001 Jan-Mar. 21(1-2):104-5. [QxMD MEDLINE Link].

  23. Bachur R, Harper MB. Reliability of the urinalysis for predicting urinary tract infections in young febrile children. Arch Pediatr Adolesc Med. 2001 Jan. 155(1):60-5. [QxMD MEDLINE Link].

  24. Michael M, Hodson EM, Craig JC, Martin S, Moyer VA. Short versus standard duration oral antibiotic therapy for acute urinary tract infection in children. Cochrane Database Syst Rev. 2003. CD003966. [QxMD MEDLINE Link].

  25. Lunn A, Holden S, Boswell T, Watson AR. Automated microscopy, dipsticks and the diagnosis of urinary tract infection. Arch Dis Child. 2010 Mar. 95(3):193-7. [QxMD MEDLINE Link].

  26. Smolkin V, Koren A, Raz R, Colodner R, Sakran W, Halevy R. Procalcitonin as a marker of acute pyelonephritis in infants and children. Pediatr Nephrol. 2002 Jun. 17(6):409-12. [QxMD MEDLINE Link].

  27. Nikfar R, Khotaee G, Ataee N, Shams S. Usefulness of procalcitonin rapid test for the diagnosis of acute pyelonephritis in children in the emergency department. Pediatr Int. 2009 Jul 6. [QxMD MEDLINE Link].

  28. Bressan S, Andreola B, Zucchetta P, Montini G, Burei M, Perilongo G, et al. Procalcitonin as a predictor of renal scarring in infants and young children. Pediatr Nephrol. 2009 Jun. 24(6):1199-204. [QxMD MEDLINE Link].

  29. Wan J, Skoog SJ, Hulbert WC, Casale AJ, Greenfield SP, Cheng EY, et al. Section on Urology response to new Guidelines for the diagnosis and management of UTI. Pediatrics. 2012 Apr. 129(4):e1051-3. [QxMD MEDLINE Link].

  30. Quigley R. Diagnosis of urinary tract infections in children. Curr Opin Pediatr. 2009 Apr. 21(2):194-8. [QxMD MEDLINE Link].

  31. Lin DS, Huang FY, Chiu NC, Koa HA, Hung HY, Hsu CH, et al. Comparison of hemocytometer leukocyte counts and standard urinalyses for predicting urinary tract infections in febrile infants. Pediatr Infect Dis J. 2000 Mar. 19(3):223-7. [QxMD MEDLINE Link].

  32. Lin DS, Huang SH, Lin CC, Tung YC, Huang TT, Chiu NC, et al. Urinary tract infection in febrile infants younger than eight weeks of Age. Pediatrics. 2000 Feb. 105(2):E20. [QxMD MEDLINE Link].

  33. Tzimenatos L, Mahajan P, Dayan PS, Vitale M, Linakis JG, Blumberg S, et al. Accuracy of the Urinalysis for Urinary Tract Infections in Febrile Infants 60 Days and Younger. Pediatrics. 2018 Feb. 141 (2):[QxMD MEDLINE Link].

  34. Kazi BA, Buffone GJ, Revell PA, Chandramohan L, Dowlin MD, Cruz AT. Performance characteristics of urinalyses for the diagnosis of pediatric urinary tract infection. Am J Emerg Med. 2013 Sep. 31(9):1405-7. [QxMD MEDLINE Link].

  35. Reuters Health. Point-Of-Care Urinalysis Lacks Accuracy in Pediatric UTIs. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/809965. Accessed: September 30, 2013.

  36. Henderson D. Abnormal Scan After UTI Raises Kids' Risk for Renal Scarring. Medscape Medical News. Aug 4 2014. [Full Text].

  37. Shaikh N, Craig JC, Rovers MM, et al. Identification of Children and Adolescents at Risk for Renal Scarring After a First Urinary Tract Infection: A Meta-analysis With Individual Patient Data. JAMA Pediatr. 2014 Aug 4. [QxMD MEDLINE Link].

  38. Tseng MH, Lin WJ, Lo WT, Wang SR, Chu ML, Wang CC. Does a normal DMSA obviate the performance of voiding cystourethrography in evaluation of young children after their first urinary tract infection?. J Pediatr. 2007 Jan. 150(1):96-9. [QxMD MEDLINE Link].

  39. Merguerian PA, Sverrisson EF, Herz DB, McQuiston LT. Urinary tract infections in children: recommendations for antibiotic prophylaxis and evaluation. An evidence-based approach. Curr Urol Rep. 2010 Mar. 11(2):98-108. [QxMD MEDLINE Link].

  40. Carpenter MA, Hoberman A, Mattoo TK, Mathews R, Keren R, Chesney RW, et al. The RIVUR Trial: Profile and Baseline Clinical Associations of Children With Vesicoureteral Reflux. Pediatrics. 2013 Jul. 132(1):e34-45. [QxMD MEDLINE Link]. [Full Text].

  41. Spencer JD, Bates CM, Mahan JD, Niland ML, Staker SR, Hains DS, et al. The accuracy and health risks of a voiding cystourethrogram after a febrile urinary tract infection. J Pediatr Urol. 2012 Feb. 8(1):72-6. [QxMD MEDLINE Link].

  42. McDonald A, Scranton M, Gillespie R, Mahajan V, Edwards GA. Voiding cystourethrograms and urinary tract infections: how long to wait?. Pediatrics. 2000 Apr. 105(4):E50. [QxMD MEDLINE Link].

  43. Mahant S, To T, Friedman J. Timing of voiding cystourethrogram in the investigation of urinary tract infections in children. J Pediatr. 2001 Oct. 139(4):568-71. [QxMD MEDLINE Link].

  44. Paschke AA, Zaoutis T, Conway PH, Xie D, Keren R. Previous antimicrobial exposure is associated with drug-resistant urinary tract infections in children. Pediatrics. 2010 Apr. 125(4):664-72. [QxMD MEDLINE Link].

  45. Hodson EM, Willis NS, Craig JC. Antibiotics for acute pyelonephritis in children. Cochrane Database Syst Rev. 2007 Oct 17. CD003772. [QxMD MEDLINE Link].

  46. Hoberman A, Wald ER, Hickey RW, Baskin M, Charron M, Majd M, et al. Oral versus initial intravenous therapy for urinary tract infections in young febrile children. Pediatrics. 1999 Jul. 104(1 Pt 1):79-86. [QxMD MEDLINE Link].

  47. Schnadower D, Kuppermann N, Macias CG, et al. Febrile infants with urinary tract infections at very low risk for adverse events and bacteremia. Pediatrics. 2010 Dec. 126(6):1074-83. [QxMD MEDLINE Link].

  48. Shaikh N, Mattoo TK, Keren R, Ivanova A, Cui G, Moxey-Mims M, et al. Early Antibiotic Treatment for Pediatric Febrile Urinary Tract Infection and Renal Scarring. JAMA Pediatr. 2016 Jul 25. [QxMD MEDLINE Link].

  49. Garcia J. Febrile UTI: Early Treatment Lowers Risk for Renal Scarring. Medscape Medical News. Available at http://www.medscape.com/viewarticle/866819. July 29, 2016; Accessed: August 1, 2016.

  50. Weisz D, Seabrook JA, Lim RK. The Presence of Urinary Nitrites Is a Significant Predictor of Pediatric Urinary Tract Infection Susceptibility to First- and Third-Generation Cephalosporins. J Emerg Med. Jul 2010. 39(1):6-12.

  51. Hoberman A, Keren R. Antimicrobial prophylaxis for urinary tract infection in children. N Engl J Med. 2009 Oct 29. 361(18):1804-6. [QxMD MEDLINE Link].

  52. Montini G, Rigon L, Zucchetta P, Fregonese F, Toffolo A, Gobber D, et al. Prophylaxis after first febrile urinary tract infection in children? A multicenter, randomized, controlled, noninferiority trial. Pediatrics. 2008 Nov. 122(5):1064-71. [QxMD MEDLINE Link].

  53. Garin EH, Olavarria F, Garcia Nieto V, Valenciano B, Campos A, Young L. Clinical significance of primary vesicoureteral reflux and urinary antibiotic prophylaxis after acute pyelonephritis: a multicenter, randomized, controlled study. Pediatrics. 2006 Mar. 117(3):626-32. [QxMD MEDLINE Link].

  54. Pennesi M, Travan L, Peratoner L, Bordugo A, Cattaneo A, Ronfani L, et al. Is antibiotic prophylaxis in children with vesicoureteral reflux effective in preventing pyelonephritis and renal scars? A randomized, controlled trial. Pediatrics. 2008 Jun. 121(6):e1489-94. [QxMD MEDLINE Link].

  55. Mattoo TK. Are prophylactic antibiotics indicated after a urinary tract infection?. Curr Opin Pediatr. 2009 Apr. 21(2):203-6. [QxMD MEDLINE Link]. [Full Text].

  56. Craig JC, Simpson JM, Williams GJ, Lowe A, Reynolds GJ, McTaggart SJ, et al. Antibiotic prophylaxis and recurrent urinary tract infection in children. N Engl J Med. 2009 Oct 29. 361(18):1748-59. [QxMD MEDLINE Link].

  57. Hewitt IK, Pennesi M, Morello W, Ronfani L, Montini G. Antibiotic Prophylaxis for Urinary Tract Infection-Related Renal Scarring: A Systematic Review. Pediatrics. 2017 May. 139 (5):762-6. [QxMD MEDLINE Link].

  58. Williams G, Craig JC. Long-term antibiotics for preventing recurrent urinary tract infection in children. Cochrane Database Syst Rev. 2011 Mar 16. 3:CD001534. [QxMD MEDLINE Link].

  59. Selekman RE, Shapiro DJ, Boscardin J, Williams G, Craig JC, Brandström P, et al. Uropathogen Resistance and Antibiotic Prophylaxis: A Meta-analysis. Pediatrics. 2018 Jul. 142 (1):[QxMD MEDLINE Link].

  60. American Academy of Pediatrics Task Force on Circumcision. Circumcision policy statement. Pediatrics. 2012 Sep. 130(3):585-6. [QxMD MEDLINE Link].

  61. Ferrara P, Romaniello L, Vitelli O, Gatto A, Serva M, Cataldi L. Cranberry juice for the prevention of recurrent urinary tract infections: a randomized controlled trial in children. Scand J Urol Nephrol. 2009. 43(5):369-72. [QxMD MEDLINE Link].

  62. Jepson RG, Williams G, Craig JC. Cranberries for preventing urinary tract infections. Cochrane Database Syst Rev. 2012 Oct 17. 10:CD001321. [QxMD MEDLINE Link].

  63. Bryce A, Hay AD, Lane IF, Thornton HV, Wootton M, Costelloe C. Global prevalence of antibiotic resistance in paediatric urinary tract infections caused by Escherichia coli and association with routine use of antibiotics in primary care: systematic review and meta-analysis. BMJ. 2016 Mar 15. 352:i939. [QxMD MEDLINE Link].

  64. The RIVUR Trial Investigators. Antimicrobial Prophylaxis for Children with Vesicoureteral Reflux. N Engl J Med. 2014 May 4. [QxMD MEDLINE Link].

Author

Chief Editor

Russell W Steele, MD Clinical Professor, Tulane University School of Medicine; Staff Physician, Ochsner Clinic Foundation

Russell W Steele, MD is a member of the following medical societies: American Academy of Pediatrics, American Association of Immunologists, American Pediatric Society, American Society for Microbiology, Infectious Diseases Society of America, Louisiana State Medical Society, Pediatric Infectious Diseases Society, Society for Pediatric Research, Southern Medical Association

Disclosure: Nothing to disclose.

Acknowledgements

Leslie L Barton, MD Professor Emerita of Pediatrics, University of Arizona College of Medicine

Leslie L Barton, MD is a member of the following medical societies: American Academy of Pediatrics, Association of Pediatric Program Directors, Infectious Diseases Society of America, and Pediatric Infectious Diseases Society

Disclosure: Nothing to disclose.

Ann G Egland, MD Consulting Staff, Department of Operational and Emergency Medicine, Walter Reed Army Medical Center

Ann G Egland, MD is a member of the following medical societies: American College of Emergency Physicians, American Medical Association, Association of Military Surgeons of the US, Medical Society of Virginia, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Terrance K Egland, MD Director, Business Planning and Development, Bureau of Medicine and Surgery

Disclosure: Nothing to disclose.

Stanley Hellerstein, MD (Retired) Pediatric Nephrologist, Children's Mercy Hospital of Kansas City; (Retired) Ernest L Glasscock, MD Chair in Pediatric Research, Professor of Pediatrics, University of Missouri School of Medicine at Kansas City

Disclosure: Nothing to disclose.

David S Howes, MD Professor of Medicine and Pediatrics, Section Chief and Emergency Medicine Residency Program Director, University of Chicago Division of the Biological Sciences, The Pritzker School of Medicine

David S Howes, MD is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, American College of Physicians-American Society of Internal Medicine, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Stephen L Thornton, MD Assistant Professor of Emergency Medicine, University of Kansas Hospital

Stephen L Thornton, MD is a member of the following medical societies: American College of Emergency Physicians and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Grace M Young, MD Associate Professor, Department of Pediatrics, University of Maryland Medical Center

Grace M Young, MD is a member of the following medical societies: American Academy of Pediatrics and American College of Emergency Physicians

Disclosure: Nothing to disclose.

Which type of medication may be used in the treatment of a patient with incontinence to inhibit contraction of the bladder *?

Mirabegron (Myrbetriq) Mirabegron is a medication approved to treat certain types of urinary incontinence. It relaxes the bladder muscle and can increase how much urine the bladder can hold.

Which factor contributes to UTI in older adults quizlet?

The most significant risk factors associated with UTI in institutionalized older adults are the presence of a urinary catheter and, similar to community-dwelling older adults, history of prior UTI [3,13,27].

Which of the following is classified as a upper urinary tract infection UTI )?

Related terms include pyelonephritis, which refers to upper urinary tract infection; bacteriuria, which describes bacteria in the urine; and candiduria, which describes yeast in the urine. Very ill patients may be referred to as having urosepsis.

Which type of incontinence refers to involuntary loss of urine through an intact urethra?

"Functional Incontinence" refers to loss of urine that occurs in. residents whose urinary tract function is sufficiently intact that they should. be able to maintain continence, but who cannot remain continent because.