Which of the following processes is an example of a post-translational modification?

References

  1. Mann M, Jensen O: Proteomic analysis of post-translational modifications. Nat Biotech. 2003, 21: 255-261. 10.1038/nbt0303-255.

    CAS  Google Scholar 

  2. Wu R, Haas W, Dephoure N, Huttlin EL, Zhai B, Sowa ME, Gygi SP: A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods. 2011, 8: 677-683.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Butkinaree C, Park K, Hart GW: O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta. 2010, 1800: 96-106.

    CAS  PubMed  Google Scholar 

  4. Seo J, Jeong J, Kim YM, Hwang N, Paek E, Lee K-J: Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase. J Proteome Res. 2008, 7: 587-602.

    CAS  PubMed  Google Scholar 

  5. Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JEP, Shabanowitz J, Hunt DF: The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta. 2006, 1764: 1811-1822.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. White MY, Edwards AVG, Cordwell SJ, van Eyk JE: Mitochondria: a mirror into cellular dysfunction in heart disease. Prot Clin Appl. 2008, 2: 845-861. 10.1002/prca.200780135.

    CAS  Google Scholar 

  7. Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A, Skovgaard T, Kelstrup CD, Dmytriyev A, Choudhary C, Lundby C, Olsen JV: Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep. 2012, 2: 419-431.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bock T, Moest H, Omasits U, Dolski S, Lundberg E, Frei A, Hofmann A, Bausch-Fluck D, Jacobs A, Krayenbuehl N, Uhlen M, Aebersold R, Frei K, Wollscheid B: Proteomic analysis reveals drug accessible cell surface N-glycoproteins of primary and established glioblastoma cell lines. J Proteome Res. 2012, 11: 4885-4893.

    CAS  PubMed  Google Scholar 

  9. Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C: Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics. 2012, 11: 1578-1585.

    PubMed  PubMed Central  Google Scholar 

  10. Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV: Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012, 3: 876-

    PubMed  PubMed Central  Google Scholar 

  11. Kunz RC, McAllister FE, Rush J, Gygi SP: A high-throughput, multiplexed kinase assay using a benchtop orbitrap mass spectrometer to investigate the effect of kinase inhibitors on kinase signaling pathways. Anal Chem. 2012, 84: 6233-6239.

    CAS  PubMed  Google Scholar 

  12. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP: Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 2011, 44: 325-340.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villén J, Haas W, Sowa ME, Gygi SP: A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010, 143: 1174-1189.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Didangelos A, Stegemann C, Mayr M: The -omics era: proteomics and lipidomics in vascular research. Atherosclerosis. 2012, 221: 12-17.

    CAS  PubMed  Google Scholar 

  15. Senis Y, Garcia A: Platelet proteomics: state of the art and future perspective. Methods Mol Biol. 2012, 788: 367-399.

    CAS  PubMed  Google Scholar 

  16. Döring Y, Noels H, Weber C: The use of high-throughput technologies to investigate vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2012, 32: 182-195.

    PubMed  Google Scholar 

  17. Di Michele M, Van Geet C, Freson K: Recent advances in platelet proteomics. Expert Rev Proteomics. 2012, 9: 451-466.

    CAS  PubMed  Google Scholar 

  18. Johnson C, Tinti M, Wood NT, Campbell DG, Toth R, Dubois F, Geraghty KM, Wong BHC, Brown LJ, Tyler J, Gernez A, Chen S, Synowsky S, MacKintosh C: Visualization and biochemical analyses of the emerging mammalian 14-3-3-phosphoproteome. Mol Cell Proteomics. 2011, 10: M110.005751-

    PubMed  PubMed Central  Google Scholar 

  19. Stone MD, Chen X, McGowan T, Bandhakavi S, Cheng B, Rhodus NL, Griffin TJ: Large-scale phosphoproteomics analysis of whole saliva reveals a distinct phosphorylation pattern. J Proteome Res. 2011, 10: 1728-1736.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao X, León IR, Bak S, Mogensen M, Wrzesinski K, Højlund K, Jensen ON: Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol Cell Proteomics. 2011, 10: M110.000299-

    PubMed  Google Scholar 

  21. Rinschen MM, Yu M-J, Wang G, Boja ES, Hoffert JD, Pisitkun T, Knepper MA: Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci USA. 2010, 107: 3882-3887.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006, 127: 635-648.

    CAS  PubMed  Google Scholar 

  23. Manning G, Whyte D, Martinez R, Hunter T, Sudarsanam S: The protein kinase complement of the human genome. Science. 2002, 298: 1912-1934.

    CAS  PubMed  Google Scholar 

  24. Chambers JW, Pachori A, Howard S, Iqbal S, LoGrasso PV: Inhibition of JNK mitochondrial localization and signaling is protective against ischemia-reperfusion injury in rats. J Biol Chem. 2013, 288: 4000-4011.

    CAS  PubMed  Google Scholar 

  25. Das A, Salloum FN, Durrant D, Ockaili R, Kukreja RC: Rapamycin protects against myocardial ischemia-reperfusion injury through JAK2-STAT3 signaling pathway. J Mol Cell Cardiol. 2012, 53: 858-869.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng Z, DiMichele LA, Hakim ZS, Rojas M, Mack CP, Taylor JM: Targeted focal adhesion kinase activation in cardiomyocytes protects the heart from ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol. 2012, 32: 924-933.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Edwards AVG, Cordwell SJ, White MY: Phosphoproteomic profiling of the myocyte. Circ Cardiovasc Genet. 2011, 4: 575-

    PubMed  Google Scholar 

  28. Rose BA, Force T, Wang Y: Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev. 2010, 90: 1507-1546.

    CAS  PubMed  Google Scholar 

  29. Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA: Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal. 2011, 4: rs5-

    CAS  PubMed  Google Scholar 

  30. Budas G, Costa HM, Ferreira JCB, Teixeira da Silva Ferreira AE, Perales J, Krieger JEE, Mochly-Rosen D, Schechtman D: Identification of εPKC targets during cardiac ischemic injury. Circ J. 2012, 76: 1476-1485.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chou H-C, Chen Y-W, Lee T-R, Wu F-S, Chan H-T, Lyu P-C, Timms JF, Chan H-L: Proteomics study of oxidative stress and Src kinase inhibition in H9C2 cardiomyocytes: a cell model of heart ischemia-reperfusion injury and treatment. Free Radic Biol Med. 2010, 49: 96-108.

    CAS  PubMed  Google Scholar 

  32. Cohen P: The regulation of protein function by multisite phosphorylation--a 25 year update. Trends Biochem Sci. 2000, 25: 596-601.

    CAS  PubMed  Google Scholar 

  33. Moremen KW, Tiemeyer M, Nairn AV: Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012, 13: 448-462.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kornfeld S: A fascination with sugars. Mol Biol Cell. 2010, 21: 3773-3775.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cordwell SJ, Thingholm TE: Technologies for plasma membrane proteomics. Proteomics. 2010, 10: 611-627.

    CAS  PubMed  Google Scholar 

  36. Parker BL, Palmisano G, Edwards AVG, White MY, Engholm-Keller K, Lee A, Scott NE, Kolarich D, Hambly BD, Packer NH, Larsen MR, Cordwell SJ: Quantitative N-linked glycoproteomics of myocardial ischemia and reperfusion injury reveals early remodeling in the extracellular environment. Mol Cell Proteomics. 2011, 10: M110.006833-

    PubMed  PubMed Central  Google Scholar 

  37. Ufret-Vincenty CA, Baro DJ, Lederer WJ, Rockman HA, Quinones LE, Santana LF: Role of sodium channel deglycosylation in the genesis of cardiac arrhythmias in heart failure. J Biol Chem. 2001, 276: 28197-28203.

    CAS  PubMed  Google Scholar 

  38. Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A, Beggs AH, Cappuccio FP, Sagnella GA, Kass RS, Keating MT: Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science. 2002, 297: 1333-1336.

    CAS  PubMed  Google Scholar 

  39. Lönnqvist L, Karttunen L, Rantamäki T, Kielty C, Raghunath M, Peltonen L: A point mutation creating an extra N-glycosylation site in fibrillin-1 results in neonatal Marfan syndrome. Genomics. 1996, 36: 468-475.

    PubMed  Google Scholar 

  40. Lefeber DJ, de Brouwer APM, Morava E, Riemersma M, Schuurs-Hoeijmakers JHM, Absmanner B, Verrijp K, van den Akker WMR, Huijben K, Steenbergen G, van Reeuwijk J, Jozwiak A, Zucker N, Lorber A, Lammens M, Knopf C, van Bokhoven H, Grünewald S, Lehle L, Kapusta L, Mandel H, Wevers RA: Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet. 2011, 7: e1002427-

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hennet T: Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta. 2012, 1820: 1306-1317.

    CAS  PubMed  Google Scholar 

  42. Larsen MR, Jensen SS, Jakobsen LA, Heegaard NHH: Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics. 2007, 6: 1778-1787.

    CAS  PubMed  Google Scholar 

  43. McDonald CA, Yang JY, Marathe V, Yen T-Y, Macher BA: Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol Cell Proteomics. 2009, 8: 287-301.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang H, Li X-J, Martin DB, Aebersold R: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotech. 2003, 21: 660-666. 10.1038/nbt827.

    CAS  Google Scholar 

  45. Palmisano G, Lendal SE, Engholm-Keller K, Leth-Larsen R, Parker BL, Larsen MR: Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry. Nat Protoc. 2010, 5: 1974-1982.

    CAS  PubMed  Google Scholar 

  46. Jensen PH, Kolarich D, Packer NH: Mucin-type O-glycosylation--putting the pieces together. FEBS J. 2010, 277: 81-94.

    CAS  PubMed  Google Scholar 

  47. Peng J, Jiang J, Wang W, Qi X, Sun X-L, Wu Q: Glycosylation and processing of pro-B-type natriuretic peptide in cardiomyocytes. Biochem Biophys Res Commun. 2011, 411: 593-598.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chandrasekhar KD, Lvov A, Terrenoire C, Gao GY, Kass RS, Kobertz WR: O-glycosylation of the cardiac I(Ks) complex. J Physiol. 2011, 589: 3721-3730.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Z, Udeshi ND, Slawson C, Compton PD, Sakabe K, Cheung WD, Shabanowitz J, Hunt DF, Hart GW: Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal. 2010, 3: ra2-

    PubMed  PubMed Central  Google Scholar 

  50. Zachara NE, O'Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW: Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem. 2004, 279: 30133-30142.

    CAS  PubMed  Google Scholar 

  51. Zachara NE, Hart GW: Cell signaling, the essential role of O-GlcNAc!. Biochim Biophys Acta. 2006, 1761: 599-617.

    CAS  PubMed  Google Scholar 

  52. Marsh SA, Chatham JC: The paradoxical world of protein O-GlcNAcylation: a novel effector of cardiovascular (dys)function. Cardiovasc Res. 2011, 89: 487-488.

    CAS  PubMed  Google Scholar 

  53. Liu J, Marchase RB, Chatham JC: Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis. Am J Physiol Heart Circ Physiol. 2007, 293: H1391-H1399.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fülöp N, Zhang Z, Marchase RB, Chatham JC: Glucosamine cardioprotection in perfused rat hearts associated with increased O-linked N-acetylglucosamine protein modification and altered p38 activation. Am J Physiol Heart Circ Physiol. 2007, 292: H2227-H2236.

    PubMed  PubMed Central  Google Scholar 

  55. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O: Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 2011, 80: 825-858.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ngoh GA, Watson LJ, Facundo HT, Jones SP: Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes. Amino Acids. 2011, 40: 895-911.

    CAS  PubMed  Google Scholar 

  57. Marsh SA, Dell'Italia LJ, Chatham JC: Activation of the hexosamine biosynthesis pathway and protein O-GlcNAcylation modulate hypertrophic and cell signaling pathways in cardiomyocytes from diabetic mice. Amino Acids. 2011, 40: 819-828.

    CAS  PubMed  Google Scholar 

  58. Hu Y, Belke D, Suarez J, Swanson E, Clark R, Hoshijima M, Dillmann WH: Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ Res. 2005, 96: 1006-1013.

    CAS  PubMed  Google Scholar 

  59. You L, Nie J, Sun W-J, Zheng Z-Q, Yang X-J: Lysine acetylation: enzymes, bromodomains and links to different diseases. Essays Biochem. 2012, 52: 1-12.

    CAS  PubMed  Google Scholar 

  60. Guan K-L, Xiong Y: Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci. 2011, 36: 108-116.

    CAS  PubMed  Google Scholar 

  61. Norris KL, Lee J-Y, Yao T-P: Acetylation goes global: the emergence of acetylation biology. Sci Signal. 2009, 2: pe76-

    PubMed  PubMed Central  Google Scholar 

  62. Newman JC, He W, Verdin E: Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J Biol Chem. 2012, 287: 42436-42443.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sack MN: The role of SIRT3 in mitochondrial homeostasis and cardiac adaptation to hypertrophy and aging. J Mol Cell Cardiol. 2012, 52: 520-525.

    CAS  PubMed  Google Scholar 

  64. Morris BJ: Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2012

    Google Scholar 

  65. Tanno M, Kuno A, Horio Y, Miura T: Emerging beneficial roles of sirtuins in heart failure. Basic Res Cardiol. 2012, 107: 273-

    PubMed  PubMed Central  Google Scholar 

  66. Kawashima T, Inuzuka Y, Okuda J, Kato T, Niizuma S, Tamaki Y, Iwanaga Y, Kawamoto A, Narazaki M, Matsuda T, Adachi S, Takemura G, Kita T, Kimura T, Shioi T: Constitutive SIRT1 overexpression impairs mitochondria and reduces cardiac function in mice. J Mol Cell Cardiol. 2011, 51: 1026-1036.

    CAS  PubMed  Google Scholar 

  67. Nadtochiy SM, Yao H, McBurney MW, Gu W, Guarente L, Rahman I, Brookes PS: SIRT1-mediated acute cardioprotection. Am J Physiol Heart Circ Physiol. 2011, 301: H1506-H1512.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nadtochiy SM, Redman E, Rahman I, Brookes PS: Lysine deacetylation in ischaemic preconditioning: the role of SIRT1. Cardiovasc Res. 2011, 89: 643-649.

    CAS  PubMed  Google Scholar 

  69. Chong ZZ, Wang S, Shang YC, Maiese K: Targeting cardiovascular disease with novel SIRT1 pathways. Future Cardiol. 2012, 8: 89-100.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Narayan N, Lee IH, Borenstein R, Sun J, Wong R, Tong G, Fergusson MM, Liu J, Rovira II, Cheng H-L, Wang G, Gucek M, Lombard D, Alt FW, Sack MN, Murphy E, Cao L, Finkel T: The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature. 2012, 492: 199-204.

    CAS  PubMed  Google Scholar 

  71. Choudhary C, Kumar C, Gnad F, Nielsen M, Rehman M, Walther T, Olsen J, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009, 325: 834-840.

    CAS  PubMed  Google Scholar 

  72. Sol EM, Wagner SA, Weinert BT, Kumar A, Kim H-S, Deng C-X, Choudhary C: Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3. PLoS ONE. 2012, 7: e50545-

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mischerikow N, Heck AJR: Targeted large-scale analysis of protein acetylation. Proteomics. 2011, 11: 571-589.

    CAS  PubMed  Google Scholar 

  74. Li T, Evdokimov E, Shen R-F, Chao C-C, Tekle E, Wang T, Stadtman ER, Yang DCH, Chock PB: Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc Natl Acad Sci USA. 2004, 101: 8551-8556.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Matafora V, D'Amato A, Mori S, Blasi F, Bachi A: Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol Cell Proteomics. 2009, 8: 2243-2255.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Flick K, Kaiser P: Proteomic revelation: SUMO changes partners when the heat is on. Science Signaling. 2009, 2: pe45-

    PubMed  PubMed Central  Google Scholar 

  77. Wang J, Schwartz RJ: Sumoylation and regulation of cardiac gene expression. Circ Res. 2010, 107: 19-29.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang J: Cardiac function and disease: emerging role of small ubiquitin-related modifier. Wiley Interdiscip Rev Syst Biol Med. 2011, 3: 446-457.

    CAS  PubMed  Google Scholar 

  79. Benson MD, Li Q-J, Kieckhafer K, Dudek D, Whorton MR, Sunahara RK, Iñiguez-Lluhí JA, Martens JR: SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proc Natl Acad Sci USA. 2007, 104: 1805-1810.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu H, Zein El L, Kruse M, Guinamard R, Beckmann A, Bozio A, Kurtbay G, Mégarbané A, Ohmert I, Blaysat G, Villain E, Pongs O, Bouvagnet P: Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet. 2010, 3: 374-385.

    CAS  PubMed  Google Scholar 

  81. Kim EY, Chen L, Ma Y, Yu W, Chang J, Moskowitz IP, Wang J: Enhanced desumoylation in murine hearts by overexpressed SENP2 leads to congenital heart defects and cardiac dysfunction. J Mol Cell Cardiol. 2012, 52: 638-649.

    CAS  PubMed  Google Scholar 

  82. Kim EY, Chen L, Ma Y, Yu W, Chang J, Moskowitz IP, Wang J: Expression of sumoylation deficient Nkx2.5 mutant in Nkx2.5 haploinsufficient mice leads to congenital heart defects. PLoS ONE. 2011, 6: e20803-

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schwartz RJ, Yeh ETH: Weighing in on heart failure: the role of SERCA2a SUMOylation. Circ Res. 2012, 110: 198-199.

    CAS  PubMed  Google Scholar 

  84. Kho C, Lee A, Jeong D, Oh JG, Chaanine AH, Kizana E, Park WJ, Hajjar RJ: SUMO1-dependent modulation of SERCA2a in heart failure. Nature. 2011, 477: 601-605.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Blomster HA, Imanishi SY, Siimes J, Kastu J, Morrice NA, Eriksson JE, Sistonen L: In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. J Biol Chem. 2010, 285: 19324-19329.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tatham MH, Rodriguez MS, Xirodimas DP, Hay RT: Detection of protein SUMOylation in vivo. Nat Protoc. 2009, 4: 1363-1371.

    CAS  PubMed  Google Scholar 

  87. Galisson F, Mahrouche L, Courcelles M, Bonneil E, Meloche S, Chelbi-Alix MK, Thibault P: A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Mol Cell Proteomics. 2011, 10: M110.004796-

    PubMed  Google Scholar 

  88. Bicker KL, Thompson PR: The protein arginine deiminases: Structure, function, inhibition, and disease. Biopolymers. 2013, 99: 155-163.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Serra-Bonett N, Rodriguez MA: The swollen joint, the thickened artery, and the smoking gun: tobacco exposure, citrullination and rheumatoid arthritis. Rheumatol Int. 2011, 31: 567-572.

    CAS  PubMed  Google Scholar 

  90. Giles JT, Fert-Bober J, Park JK, Bingham CO3, Andrade F, Fox-Talbot K, Pappas D, Rosen A, Van Eyk J, Bathon JM, Halushka MK: Myocardial citrullination in rheumatoid arthritis: a correlative histopathologic study. Arthritis Res Ther. 2012, 14: R39-

    PubMed  PubMed Central  Google Scholar 

  91. De Ceuleneer M, Van Steendam K, Dhaenens M, Deforce D: In vivo relevance of citrullinated proteins and the challenges in their detection. Proteomics. 2012, 12: 752-760.

    CAS  PubMed  Google Scholar 

  92. Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO: A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteome Res. 2009, 8: 754-769.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Singh DK, Winocour P, Farrington K: Oxidative stress in early diabetic nephropathy: fueling the fire. Nat Rev Endocrinol. 2011, 7: 176-184.

    CAS  PubMed  Google Scholar 

  94. Goova MT, Li J, Kislinger T, Qu W, Lu Y, Bucciarelli LG, Nowygrod S, Wolf BM, Caliste X, Yan S-F, Stern DM, Schmidt AM: Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice. Am J Pathol. 2001, 159: 513-525.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Basta G, Schmidt AM, De Caterina R: Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004, 63: 582-592.

    CAS  PubMed  Google Scholar 

  96. Yeh CH, Sturgis L, Haidacher J, Zhang XN, Sherwood SJ, Bjercke RJ, Juhasz O, Crow MT, Tilton RG, Denner L: Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes. 2001, 50: 1495-1504.

    CAS  PubMed  Google Scholar 

  97. Susic D: Cross-link breakers as a new therapeutic approach to cardiovascular disease. Biochem Soc Trans. 2007, 35: 853-856.

    CAS  PubMed  Google Scholar 

  98. Diguet N, Mallat Y, Ladouce R, Clodic G, Prola A, Tritsch E, Blanc J, Larcher J-C, Delcayre C, Samuel J-L, Friguet B, Bolbach G, Li Z, Mericskay M: Muscle creatine kinase deficiency triggers both actin depolymerization and desmin disorganization by advanced glycation end products in dilated cardiomyopathy. J Biol Chem. 2011, 286: 35007-35019.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Colhoun HM, Betteridge DJ, Durrington P, Hitman G, Neil A, Livingstone S, Charlton-Menys V, Bao W, Demicco DA, Preston GM, Deshmukh H, Tan K, Fuller JH: Total soluble and endogenous secretory receptor for advanced glycation end products as predictive biomarkers of coronary heart disease risk in patients with type 2 diabetes: an analysis from the CARDS trial. Diabetes. 2011, 60: 2379-2385.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Simm A, Wagner J, Gursinsky T, Nass N, Friedrich I, Schinzel R, Czeslik E, Silber RE, Scheubel RJ: Advanced glycation endproducts: a biomarker for age as an outcome predictor after cardiac surgery?. Exp Gerontol. 2007, 42: 668-675.

    CAS  PubMed  Google Scholar 

  101. Hartog JWL, Voors AA, Schalkwijk CG, Scheijen J, Smilde TDJ, Damman K, Bakker SJL, Smit AJ, van Veldhuisen DJ: Clinical and prognostic value of advanced glycation end-products in chronic heart failure. Eur Heart J. 2007, 28: 2879-2885.

    CAS  PubMed  Google Scholar 

  102. Koyama Y, Takeishi Y, Arimoto T, Niizeki T, Shishido T, Takahashi H, Nozaki N, Hirono O, Tsunoda Y, Nitobe J, Watanabe T, Kubota I: High serum level of pentosidine, an advanced glycation end product (AGE), is a risk factor of patients with heart failure. J Card Fail. 2007, 13: 199-206.

    CAS  PubMed  Google Scholar 

  103. Kilhovd BK, Juutilainen A, Lehto S, Rönnemaa T, Torjesen PA, Hanssen KF, Laakso M: Increased serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in women with type 2 diabetes: a population-based 18 year follow-up study. Diabetologia. 2007, 50: 1409-1417.

    CAS  PubMed  Google Scholar 

  104. Zhang Q, Monroe ME, Schepmoes AA, Clauss TRW, Gritsenko MA, Meng D, Petyuk VA, Smith RD, Metz TO: Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects. J Proteome Res. 2011, 10: 3076-3088.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Robinson NE, Robinson AB: Deamidation of human proteins. Proc Natl Acad Sci USA. 2001, 98: 12409-12413.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hains PG, Truscott RJW: Age-dependent deamidation of lifelong proteins in the human lens. Invest Ophthalmol Vis Sci. 2010, 51: 3107-3114.

    PubMed  PubMed Central  Google Scholar 

  107. Ren J, Zhang S, Kovacs A, Wang Y, Muslin AJ: Role of p38alpha MAPK in cardiac apoptosis and remodeling after myocardial infarction. J Mol Cell Cardiol. 2005, 38: 617-623.

    CAS  PubMed  Google Scholar 

  108. White MY, Cordwell SJ, McCarron HCK, Tchen AS, Hambly BD, Jeremy RW: Modifications of myosin-regulatory light chain correlate with function of stunned myocardium. J Mol Cell Cardiol. 2003, 35: 833-840.

    CAS  PubMed  Google Scholar 

  109. Overall CM, Blobel CP: In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol. 2007, 8: 245-257.

    CAS  PubMed  Google Scholar 

  110. Puente XS, Sánchez LM, Overall CM, López-Otín C: Human and mouse proteases: a comparative genomic approach. Nat Rev Genet. 2003, 4: 544-558.

    CAS  PubMed  Google Scholar 

  111. Klingler D, Hardt M: Targeting proteases in cardiovascular diseases by mass spectrometry-based proteomics. Circ Cardiovasc Genet. 2012, 5: 265-

    PubMed  PubMed Central  Google Scholar 

  112. Müller AL, Dhalla NS: Role of various proteases in cardiac remodeling and progression of heart failure. Heart Fail Rev. 2012, 17: 395-409.

    PubMed  Google Scholar 

  113. Kleifeld O, Doucet A, auf dem Keller U, Prudova A, Schilling O, Kainthan RK, Starr AE, Foster LJ, Kizhakkedathu JN, Overall CM: Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat Biotech. 2010, 28: 281-288. 10.1038/nbt.1611.

    CAS  Google Scholar 

  114. Kleifeld O, Doucet A, Prudova A, auf dem Keller U, Gioia M, Kizhakkedathu JN, Overall CM: Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc. 2011, 6: 1578-1611.

    CAS  PubMed  Google Scholar 

  115. Schilling O, Barré O, Huesgen PF, Overall CM: Proteome-wide analysis of protein carboxy termini: C terminomics. Nat Methods. 2010, 7: 508-511.

    CAS  PubMed  Google Scholar 

  116. Doucet A, Overall CM: Amino-Terminal Oriented Mass Spectrometry of Substrates (ATOMS) N-terminal sequencing of proteins and proteolytic cleavage sites by quantitative mass spectrometry. Methods Enzymol. 2011, 501: 275-293.

    CAS  PubMed  Google Scholar 

  117. Becker-Pauly C, Barré O, Schilling O, auf dem Keller U, Ohler A, Broder C, Schütte A, Kappelhoff R, Stöcker W, Overall CM: Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates. Mol Cell Proteomics. 2011, 10: M111.009233-

    PubMed  PubMed Central  Google Scholar 

  118. Prudova A, auf dem Keller U, Butler GS, Overall CM: Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol Cell Proteomics. 2010, 9: 894-911.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Starr AE, Bellac CL, Dufour A, Goebeler V, Overall CM: Biochemical characterization and N-terminomics analysis of leukolysin, the membrane-type 6 matrix metalloprotease (MMP25): chemokine and vimentin cleavages enhance cell migration and macrophage phagocytic activities. J Biol Chem. 2012, 287: 13382-13395.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB: Demonstration of free radical generation in "stunned" myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl nitrone. J Clin Invest. 1988, 82: 476-485.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jacob C, Giles GI, Giles NM, Sies H: Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed Engl. 2003, 42: 4742-4758.

    CAS  PubMed  Google Scholar 

  122. Lassègue B, San Martín A, Griendling KK: Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012, 110: 1364-1390.

    PubMed  PubMed Central  Google Scholar 

  123. Santos CXC, Anilkumar N, Zhang M, Brewer AC, Shah AM: Redox signaling in cardiac myocytes. Free Radic Biol Med. 2011, 50: 777-793.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Burgoyne JR, Mongue-Din H, Eaton P, Shah AM: Redox signaling in cardiac physiology and pathology. Circ Res. 2012, 111: 1091-1106.

    CAS  PubMed  Google Scholar 

  125. Zhang Y, Tocchetti CG, Krieg T, Moens AL: Oxidative and nitrosative stress in the maintenance of myocardial function. Free Radic Biol Med. 2012, 53: 1531-1540.

    CAS  PubMed  Google Scholar 

  126. Wang X, Jian C, Zhang X, Huang Z, Xu J, Hou T, Shang W, Ding Y, Zhang W, Ouyang M, Wang Y, Yang Z, Zheng M, Cheng H: Superoxide flashes: elemental events of mitochondrial ROS signaling in the heart. J Mol Cell Cardiol. 2012, 52: 940-948.

    CAS  PubMed  Google Scholar 

  127. Tabima DM, Frizzell S, Gladwin MT: Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic Biol Med. 2012, 52: 1970-1986.

    CAS  PubMed  Google Scholar 

  128. Chalkias A, Xanthos T: Redox-mediated programed death of myocardial cells after cardiac arrest and cardiopulmonary resuscitation. Redox Rep. 2012, 17: 80-83.

    CAS  PubMed  Google Scholar 

  129. Pacher P, Beckman JS, Liaudet L: Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007, 87: 315-424.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ge Y, Moss RL: Nitroxyl, redox switches, cardiac myofilaments, and heart failure: a prequel to novel therapeutics?. Circ Res. 2012, 111: 954-956.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Murray CI, Uhrigshardt H, O'Meally RN, Cole RN, van Eyk JE: Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay. Mol Cell Proteomics. 2012, 11: M111.013441-

    PubMed  Google Scholar 

  132. Wang H, Qian W-J, Chin MH, Petyuk VA, Barry RC, Liu T, Gritsenko MA, Mottaz HM, Moore RJ, Camp Ii DG, Khan AH, Smith DJ, Smith RD: Characterization of the mouse brain proteome using global proteomic analysis complemented with cysteinyl-peptide enrichment. J Proteome Res. 2006, 5: 361-369.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee J-S, Smith E, Shilatifard A: The language of histone crosstalk. Cell. 2010, 142: 682-685.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Mishra S, Ande SR, Salter NW: O-GlcNAc modification: why so intimately associated with phosphorylation?. Cell Commun Signal. 2011, 9: 1,DOI:10.1186/1478-811X-9-1

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gu Y, Ande SR, Mishra S: Altered O-GlcNAc modification and phosphorylation of mitochondrial proteins in myoblast cells exposed to high glucose. Arch Biochem Biophys. 2011, 505: 98-104.

    CAS  PubMed  Google Scholar 

  136. Wang Z, Gucek M, Hart GW: Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci USA. 2008, 105: 13793-13798.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Graham ME, Thaysen-Andersen M, Bache N, Craft GE, Larsen MR, Packer NH, Robinson PJ: A novel post-translational modification in nerve terminals: O-linked N-acetylglucosamine phosphorylation. J Proteome Res. 2011, 10: 2725-2733.

    CAS  PubMed  Google Scholar 

  138. Hahne H, Kuster B: Discovery of O-GlcNAc-6-phosphate modified proteins in large-scale phosphoproteomics data. Mol Cell Proteomics. 2012, 11: 1063-1069.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Matic I, Schimmel J, Hendriks IA, van Santen MA, van de Rijke F, van Dam H, Gnad F, Mann M, Vertegaal ACO: Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol Cell. 2010, 39: 641-652.

    CAS  PubMed  Google Scholar 

  140. Yao Q, Li H, Liu B-Q, Huang X-Y, Guo L: SUMOylation-regulated protein phosphorylation, evidence from quantitative phosphoproteomics analyses. J Biol Chem. 2011, 286: 27342-27349.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y: AMPK and SIRT1: a long-standing partnership?. Am J Physiol Endocrinol Metab. 2010, 298: E751-E760.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Low JKK, Wilkins MR: Protein arginine methylation in Saccharomyces cerevisiae. FEBS J. 2012, 279: 4423-4443.

    CAS  PubMed  Google Scholar 

  143. Chen C, Nott TJ, Jin J, Pawson T: Deciphering arginine methylation: Tudor tells the tale. Nat Rev Mol Cell Biol. 2011, 12: 629-642.

    CAS  PubMed  Google Scholar 

  144. Black JC, Whetstine JR: Tipping the lysine methylation balance in disease. Biopolymers. 2013, 99: 127-135.

    CAS  PubMed  Google Scholar 

  145. Calise J, Powell SR: The ubiquitin proteasome system and myocardial ischemia. Am J Physiol Heart Circ Physiol. 2012, 304: H337-H349.

    PubMed  PubMed Central  Google Scholar 

Download references

Which of the following is an example of a post

These modifications include phosphorylation, glycosylation, ubiquitination, nitrosylation, methylation, acetylation, lipidation and proteolysis and influence almost all aspects of normal cell biology and pathogenesis.

What are the post

Posttranslational modifications (PTMs) are covalent processing events that change the properties of a protein by proteolytic cleavage and adding a modifying group, such as acetyl, phosphoryl, glycosyl and methyl, to one or more amino acids (1).

Which of the following processes is an example of post

Folding. Folding is a post-translational modification that happens to every protein, whether its final habitation site is cytosolic, mitochondrial, intrinsic membrane or extracellular. Folding is based on the interactions between side chains of the amino acid residues in the protein chain.

What are the 4 types of post

Types of post-translational modification.
Phosphorylation..
Acetylation..
Hydroxylation..
Methylation..

Toplist

Neuester Beitrag

Stichworte