What mineral is essential for the maintenance and solidification of bones and has been shown to reduce the incidence of cavities at low levels multiple choice question?

1. Thrivikraman G., Athirasala A., Gordon R., Zhang L., Bergan R., Keene D.R., Jones J.M., Xie H., Chen Z., Tao J. Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization. Nat. Commun. 2019;10:3520. doi: 10.1038/s41467-019-11455-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Young R., Brown W. Biological Mineralization and Demineralization. Springer; Berlin/Heidelberg, Germany: 1982. [Google Scholar]

3. Chang H.-H., Chien M.-J., Kao C.-C., Chao Y.-J., Yu P.-T., Chang C.-Y., Huang S.-J., Lee Y.-L., Chan J.C. Structural characterization of fluoride species in shark teeth. Chem. Commun. 2017;53:3838–3841. doi: 10.1039/C6CC10114C. [PubMed] [CrossRef] [Google Scholar]

4. Zilm M.E., Yu L., Hines W.A., Wei M. Magnetic properties and cytocompatibility of transition-metal-incorporated hydroxyapatite. Mater. Sci. Eng. C. 2018;87:112–119. doi: 10.1016/j.msec.2018.02.018. [PubMed] [CrossRef] [Google Scholar]

5. Xu Y.-J., Dong L., Lu Y., Zhang L.-C., An D., Gao H.-L., Yang D.-M., Hu W., Sui C., Xu W.-P. Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury. Nanoscale. 2016;8:1684–1690. doi: 10.1039/C5NR07023F. [PubMed] [CrossRef] [Google Scholar]

6. Mondal S., Manivasagan P., Bharathiraja S., Moorthy M.S., Kim H.H., Seo H., Lee K.D., Oh J. Magnetic hydroxyapatite: A promising multifunctional platform for nanomedicine application. Int. J. Nanomed. 2017;12:8389. doi: 10.2147/IJN.S147355. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Shoulders M.D., Raines R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Lin K., Zhang D., Macedo M.H., Cui W., Sarmento B., Shen G. Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv. Funct. Mater. 2019;29:1804943. doi: 10.1002/adfm.201804943. [CrossRef] [Google Scholar]

9. Ottani V., Martini D., Franchi M., Ruggeri A., Raspanti M. Hierarchical structures in fibrillar collagens. Micron. 2002;33:587–596. doi: 10.1016/S0968-4328(02)00033-1. [PubMed] [CrossRef] [Google Scholar]

10. Ferreira A.M., Gentile P., Chiono V., Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012;8:3191–3200. doi: 10.1016/j.actbio.2012.06.014. [PubMed] [CrossRef] [Google Scholar]

11. O’leary L.E., Fallas J.A., Bakota E.L., Kang M.K., Hartgerink J.D. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 2011;3:821. doi: 10.1038/nchem.1123. [PubMed] [CrossRef] [Google Scholar]

12. Lutolf M.P., Gilbert P.M., Blau H.M. Designing materials to direct stem-cell fate. Nature. 2009;462:433–441. doi: 10.1038/nature08602. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Yoo T.K., Han S.-H., Han J. Protective effects of biodegradable collagen implants on thinned sclera after strabismus surgery: A paired-eye study. J. Am. Assoc. Pediatric Ophthalmol. Strabismus. 2017;21:467–471. doi: 10.1016/j.jaapos.2017.07.217. [PubMed] [CrossRef] [Google Scholar]

14. Di Martino A., Liverani L., Rainer A., Salvatore G., Trombetta M., Denaro V. Electrospun scaffolds for bone tissue engineering. Musculoskelet. Surg. 2011;95:69–80. doi: 10.1007/s12306-011-0097-8. [PubMed] [CrossRef] [Google Scholar]

15. Kim W., Kim M., Kim G.H. 3D-printed biomimetic scaffold simulating microfibril muscle structure. Adv. Funct. Mater. 2018;28:1800405. doi: 10.1002/adfm.201800405. [CrossRef] [Google Scholar]

16. Featherstone J.D. Dental caries: A dynamic disease process. Aust. Dent. J. 2008;53:286–291. doi: 10.1111/j.1834-7819.2008.00064.x. [PubMed] [CrossRef] [Google Scholar]

17. Han M., Li Q.-L., Cao Y., Fang H., Xia R., Zhang Z.-H. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system. Sci. Rep. 2017;7:41955. doi: 10.1038/srep41955. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Habibah T.U., Salisbury H.G. StatPearls [Internet] StatPearls Publishing; Petersburg, FL, USA: 2019. [Google Scholar]

19. Cölfen H. A crystal-clear view. Nat. Mater. 2010;9:960–961. doi: 10.1038/nmat2911. [PubMed] [CrossRef] [Google Scholar]

20. Azpiazu D., Gonzalo S., González-Parra E., Egido J., Villa-Bellosta R. Role of pyrophosphate in vascular calcification in chronic kidney disease. Nefrologia. 2018;38:250–257. doi: 10.1016/j.nefro.2017.07.005. [PubMed] [CrossRef] [Google Scholar]

21. Bhadada S.K., Rao S.D. Role of phosphate in biomineralization. Calcif. Tissue Int. 2020;108:32–40. doi: 10.1007/s00223-020-00729-9. [PubMed] [CrossRef] [Google Scholar]

22. Ziegler S.G., Ferreira C.R., MacFarlane E.G., Riddle R.C., Tomlinson R.E., Chew E.Y., Martin L., Ma C.-T., Sergienko E., Pinkerton A.B. Ectopic calcification in pseudoxanthoma elasticum responds to inhibition of tissue-nonspecific alkaline phosphatase. Sci. Transl. Med. 2017;9 doi: 10.1126/scitranslmed.aal1669. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Kim D., Lee B., Thomopoulos S., Jun Y.-S. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization. Nat. Commun. 2018;9:962. doi: 10.1038/s41467-018-03041-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Hu C., Zilm M., Wei M. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure. J. Biomed. Mater. Res. Part A. 2016;104:1153–1161. doi: 10.1002/jbm.a.35649. [PubMed] [CrossRef] [Google Scholar]

25. Weiner S., Addadi L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Res. 2011;41:21–40. doi: 10.1146/annurev-matsci-062910-095803. [CrossRef] [Google Scholar]

26. Gebauer D., Völkel A., Cölfen H. Stable prenucleation calcium carbonate clusters. Science. 2008;322:1819–1822. doi: 10.1126/science.1164271. [PubMed] [CrossRef] [Google Scholar]

27. Liu Y., Li N., Qi Y.p., Dai L., Bryan T.E., Mao J., Pashley D.H., Tay F.R. Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly. Adv. Mater. 2011;23:975–980. doi: 10.1002/adma.201003882. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Hu C., Zhang L., Wei M. Development of biomimetic scaffolds with both intrafibrillar and extrafibrillar mineralization. ACS Biomater. Sci. Eng. 2015;1:669–676. doi: 10.1021/acsbiomaterials.5b00088. [PubMed] [CrossRef] [Google Scholar]

29. Jee S.-S., Thula T.T., Gower L.B. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: Influence of polymer molecular weight. Acta Biomater. 2010;6:3676–3686. doi: 10.1016/j.actbio.2010.03.036. [PubMed] [CrossRef] [Google Scholar]

30. Kim Y.K., Gu L.-S., Bryan T.E., Kim J.R., Chen L., Liu Y., Yoon J.C., Breschi L., Pashley D.H., Tay F.R. Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. Biomaterials. 2010;31:6618–6627. doi: 10.1016/j.biomaterials.2010.04.060. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Nudelman F., Pieterse K., George A., Bomans P.H., Friedrich H., Brylka L.J., Hilbers P.A., de With G., Sommerdijk N.A. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 2010;9:1004. doi: 10.1038/nmat2875. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Chen L., Jacquet R., Lowder E., Landis W.J. Refinement of collagen–mineral interaction: A possible role for osteocalcin in apatite crystal nucleation, growth and development. Bone. 2015;71:7–16. doi: 10.1016/j.bone.2014.09.021. [PubMed] [CrossRef] [Google Scholar]

33. Thula T.T., Rodriguez D.E., Lee M.H., Pendi L., Podschun J., Gower L.B. In vitro mineralization of dense collagen substrates: A biomimetic approach toward the development of bone-graft materials. Acta Biomater. 2011;7:3158–3169. doi: 10.1016/j.actbio.2011.04.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Silver F.H., Landis W.J. Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen. Connect. Tissue Res. 2011;52:242–254. doi: 10.3109/03008207.2010.551567. [PubMed] [CrossRef] [Google Scholar]

35. Xu Z., Yang Y., Zhao W., Wang Z., Landis W.J., Cui Q., Sahai N. Molecular mechanisms for intrafibrillar collagen mineralization in skeletal tissues. Biomaterials. 2015;39:59–66. doi: 10.1016/j.biomaterials.2014.10.048. [PubMed] [CrossRef] [Google Scholar]

36. Kim D., Lee B., Thomopoulos S., Jun Y.-S. In situ evaluation of calcium phosphate nucleation kinetics and pathways during intra-and extrafibrillar mineralization of collagen matrices. Cryst. Growth Des. 2016;16:5359–5366. doi: 10.1021/acs.cgd.6b00864. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Qu H., Xia Z., Knecht D.A., Wei M. Synthesis of dense collagen/apatite composites using a biomimetic method. J. Am. Ceram. Soc. 2008;91:3211–3215. doi: 10.1111/j.1551-2916.2008.02634.x. [CrossRef] [Google Scholar]

38. Hu C., Yu L., Wei M. Sectioning studies of biomimetic collagen-hydroxyapatite coatings on Ti-6Al-4V substrates using focused ion beam. Appl. Surf. Sci. 2018;444:590–597. doi: 10.1016/j.apsusc.2018.03.045. [CrossRef] [Google Scholar]

39. Gebauer D., Cölfen H. Prenucleation clusters and non-classical nucleation. Nano Today. 2011;6:564–584. doi: 10.1016/j.nantod.2011.10.005. [CrossRef] [Google Scholar]

40. Habraken W.J., Tao J., Brylka L.J., Friedrich H., Bertinetti L., Schenk A.S., Verch A., Dmitrovic V., Bomans P.H., Frederik P.M. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 2013;4:1507. doi: 10.1038/ncomms2490. [PubMed] [CrossRef] [Google Scholar]

41. Deshpande A.S., Beniash E. Bioinspired synthesis of mineralized collagen fibrils. Cryst. Growth Des. 2008;8:3084–3090. doi: 10.1021/cg800252f. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Gower L., Tirrell D. Calcium carbonate films and helices grown in solutions of poly (aspartate) J. Cryst. Growth. 1998;191:153–160. doi: 10.1016/S0022-0248(98)00002-5. [CrossRef] [Google Scholar]

43. Gower L.B., Odom D.J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth. 2000;210:719–734. doi: 10.1016/S0022-0248(99)00749-6. [CrossRef] [Google Scholar]

44. Olszta M.J., Cheng X., Jee S.S., Kumar R., Kim Y.-Y., Kaufman M.J., Douglas E.P., Gower L.B. Bone structure and formation: A new perspective. Mater. Sci. Eng. R Rep. 2007;58:77–116. doi: 10.1016/j.mser.2007.05.001. [CrossRef] [Google Scholar]

45. Xu Y., Tijssen K.C., Bomans P.H., Akiva A., Friedrich H., Kentgens A.P., Sommerdijk N.A. Microscopic structure of the polymer-induced liquid precursor for calcium carbonate. Nat. Commun. 2018;9:2582. doi: 10.1038/s41467-018-05006-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Wolf S.L., Caballero L., Melo F., Cölfen H. Gel-like calcium carbonate precursors observed by in situ AFM. Langmuir. 2017;33:158–163. doi: 10.1021/acs.langmuir.6b03974. [PubMed] [CrossRef] [Google Scholar]

47. Ma Y.-X., Hoff S.E., Huang X.-Q., Liu J., Wan Q.-Q., Song Q., Gu J.-T., Heinz H., Tay F.R., Niu L.-N. Involvement of prenucleation clusters in calcium phosphate mineralization of collagen. Acta Biomater. 2020;120:213–223. doi: 10.1016/j.actbio.2020.07.038. [PubMed] [CrossRef] [Google Scholar]

48. Garcia N.A., Malini R.I., Freeman C.L., Demichelis R., Raiteri P., Sommerdijk N.A., Harding J.H., Gale J.D. Simulation of calcium phosphate prenucleation clusters in aqueous solution: Association beyond ion pairing. Cryst. Growth Des. 2019;19:6422–6430. doi: 10.1021/acs.cgd.9b00889. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Sugawara-Narutaki A., Nakamura J., Ohtsuki C. Bioceramics. Elsevier; Amsterdam, The Netherlands: 2020. [Google Scholar]

50. Olszta M., Douglas E., Gower L. Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif. Tissue Int. 2003;72:583–591. doi: 10.1007/s00223-002-1032-7. [PubMed] [CrossRef] [Google Scholar]

51. Olszta M.J., Douglas E.P., Gower L.B. Intrafibrillar mineralization of collagen using a liquid-phase mineral precursor. MRS Online Proc. Libr. Arch. 2003;774 doi: 10.1557/PROC-774-O7.10. [CrossRef] [Google Scholar]

52. Olszta M.J., Odom D.J., Douglas E.P., Gower L.B. A new paradigm for biomineral formation: Mineralization via an amorphous liquid-phase precursor. Connect. Tissue Res. 2003;44:326–334. doi: 10.1080/03008200390181852. [PubMed] [CrossRef] [Google Scholar]

53. Jee S.S., Culver L., Li Y., Douglas E.P., Gower L.B. Biomimetic mineralization of collagen via an enzyme-aided PILP process. J. Cryst. Growth. 2010;312:1249–1256. doi: 10.1016/j.jcrysgro.2009.11.010. [CrossRef] [Google Scholar]

54. Jee S.S., Kasinath R.K., DiMasi E., Kim Y.-Y., Gower L. Oriented hydroxyapatite in turkey tendon mineralized via the polymer-induced liquid-precursor (PILP) process. CrystEngComm. 2011;13:2077–2083. doi: 10.1039/c0ce00605j. [CrossRef] [Google Scholar]

55. França C.M., Thrivikraman G., Athirasala A., Tahayeri A., Gower L.B., Bertassoni L.E. The influence of osteopontin-guided collagen intrafibrillar mineralization on pericyte differentiation and vascularization of engineered bone scaffolds. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019;107:1522–1532. doi: 10.1002/jbm.b.34244. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Saxena N., Cremer M.A., Dolling E.S., Nurrohman H., Habelitz S., Marshall G.W., Gower L.B. Influence of fluoride on the mineralization of collagen via the polymer-induced liquid-precursor (PILP) process. Dent. Mater. 2018;34:1378–1390. doi: 10.1016/j.dental.2018.06.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. James B.D., Guerin P., Iverson Z., Allen J.B. Mineralized DNA-collagen complex-based biomaterials for bone tissue engineering. Int. J. Biol. Macromol. 2020;161:1127–1139. doi: 10.1016/j.ijbiomac.2020.06.126. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Li S.T., Katz E.P. An electrostatic model for collagen fibrils. The interaction of reconstituted collagen with Ca++, Na+, and Cl− Biopolym. Orig. Res. Biomol. 1976;15:1439–1460. doi: 10.1002/bip.1976.360150802. [PubMed] [CrossRef] [Google Scholar]

59. Nudelman F., Lausch A.J., Sommerdijk N.A., Sone E.D. In vitro models of collagen biomineralization. J. Struct. Biol. 2013;183:258–269. doi: 10.1016/j.jsb.2013.04.003. [PubMed] [CrossRef] [Google Scholar]

60. Wang Y., Azaïs T., Robin M., Vallée A., Catania C., Legriel P., Pehau-Arnaudet G., Babonneau F., Giraud-Guille M.-M., Nassif N. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat. Mater. 2012;11:724–733. doi: 10.1038/nmat3362. [PubMed] [CrossRef] [Google Scholar]

61. Wu S., Gu L., Huang Z., Sun Q., Chen H., Ling J., Mai S. Intrafibrillar mineralization of polyacrylic acid-bound collagen fibrils using a two-dimensional collagen model and Portland cement-based resins. Eur. J. Oral Sci. 2017;125:72–80. doi: 10.1111/eos.12319. [PubMed] [CrossRef] [Google Scholar]

62. Rodriguez D.E., Thula-Mata T., Toro E.J., Yeh Y.-W., Holt C., Holliday L.S., Gower L.B. Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater. 2014;10:494–507. doi: 10.1016/j.actbio.2013.10.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Jiang W., Griffanti G., Tamimi F., McKee M.D., Nazhat S.N. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels. J. Struct. Biol. 2020;212:107592. doi: 10.1016/j.jsb.2020.107592. [PubMed] [CrossRef] [Google Scholar]

64. Yu L., Martin I.J., Kasi R.M., Wei M. Enhanced intrafibrillar mineralization of collagen fibrils induced by brushlike polymers. ACS Appl. Mater. Interfaces. 2018;10:28440–28449. doi: 10.1021/acsami.8b10234. [PubMed] [CrossRef] [Google Scholar]

65. Yu L., Rowe D.W., Perera I.P., Zhang J., Suib S.L., Xin X., Wei M. Intrafibrillar Mineralized Collagen-Hydroxyapatite-Based Scaffolds for Bone Regeneration. ACS Appl. Mater. Interfaces. 2020;12:18235–18249. doi: 10.1021/acsami.0c00275. [PubMed] [CrossRef] [Google Scholar]

66. Hu C., Yu L., Wei M. Biomimetic intrafibrillar silicification of collagen fibrils through a one-step collagen self-assembly/silicification approach. RSC Adv. 2017;7:34624–34632. doi: 10.1039/C7RA02935G. [CrossRef] [Google Scholar]

67. Kerns J.G., Buckley K., Churchwell J., Parker A.W., Matousek P., Goodship A.E. Is the collagen primed for mineralization in specific regions of the turkey tendon? An investigation of the protein–mineral interface using Raman spectroscopy. Anal. Chem. 2016;88:1559–1563. doi: 10.1021/acs.analchem.5b00406. [PubMed] [CrossRef] [Google Scholar]

68. Jiao K., Niu L.N., Ma C.F., Huang X.Q., Pei D.D., Luo T., Huang Q., Chen J.H., Tay F.R. Complementarity and uncertainty in intrafibrillar mineralization of collagen. Adv. Funct. Mater. 2016;26:6858–6875. doi: 10.1002/adfm.201602207. [CrossRef] [Google Scholar]

69. Li Y., Rodriguez-Cabello J.C., Aparicio C. Intrafibrillar mineralization of self-assembled elastin-like recombinamer fibrils. ACS Appl. Mater. Interfaces. 2017;9:5838–5846. doi: 10.1021/acsami.6b15285. [PubMed] [CrossRef] [Google Scholar]

70. Niu L.-N., Jee S.E., Jiao K., Tonggu L., Li M., Wang L., Yang Y.-D., Bian J.-H., Breschi L., Jang S.S. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat. Mater. 2017;16:370–378. doi: 10.1038/nmat4789. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Song Q., Jiao K., Tonggu L., Wang L., Zhang S., Yang Y., Zhang L., Bian J., Hao D., Wang C. Contribution of biomimetic collagen-ligand interaction to intrafibrillar mineralization. Sci. Adv. 2019;5:eaav9075. doi: 10.1126/sciadv.aav9075. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Toroian D., Lim J.E., Price P.A. The size exclusion characteristics of type I collagen implications for the role of noncollagenous bone constituents in mineralization. J. Biol. Chem. 2007;282:22437–22447. doi: 10.1074/jbc.M700591200. [PubMed] [CrossRef] [Google Scholar]

73. Price P.A., Toroian D., Lim J.E. Mineralization by inhibitor exclusion the calcification of collagen with fetuin. J. Biol. Chem. 2009;284:17092–17101. doi: 10.1074/jbc.M109.007013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Singh A., Gill G., Kaur H., Amhmed M., Jakhu H. Role of osteopontin in bone remodeling and orthodontic tooth movement: A review. Prog. Orthod. 2018;19:18. doi: 10.1186/s40510-018-0216-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Wang Z., Ustriyana P., Chen K., Zhao W., Xu Z., Sahai N. Towards the Understanding of Small Protein-Mediated Collagen Intrafibrillar Mineralization. ACS Biomater. Sci. Eng. 2020 doi: 10.1021/acsbiomaterials.0c00386. [PubMed] [CrossRef] [Google Scholar]

76. Cai M.M., Smith E.R., Holt S.G. The role of fetuin-A in mineral trafficking and deposition. BoneKEy Rep. 2015;4 doi: 10.1038/bonekey.2015.39. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Ping H., Xie H., Su B.-L., Cheng Y.-B., Wang W., Wang H., Wang Y., Zhang J., Zhang F., Fu Z. Organized intrafibrillar mineralization, directed by a rationally designed multi-functional protein. J. Mater. Chem. B. 2015;3:4496–4502. doi: 10.1039/C5TB00386E. [PubMed] [CrossRef] [Google Scholar]

78. Wei S., Wu H., Luo X.-J. Biomineralization Precursor Carrier System Based on Carboxyl-Functionalized Large Pore Mesoporous Silica Nanoparticles. Curr. Med. Sci. 2020;40:155–167. doi: 10.1007/s11596-020-2159-3. [PubMed] [CrossRef] [Google Scholar]

79. Du T., Niu X., Hou S., Li Z., Li P., Fan Y. Apatite minerals derived from collagen phosphorylation modification induce the hierarchical intrafibrillar mineralization of collagen fibers. J. Biomed. Mater. Res. Part A. 2019;107:2403–2413. doi: 10.1002/jbm.a.36747. [PubMed] [CrossRef] [Google Scholar]

80. Marbach S., Bocquet L. Osmosis, from molecular insights to large-scale applications. Chem. Soc. Rev. 2019;48:3102–3144. doi: 10.1039/C8CS00420J. [PubMed] [CrossRef] [Google Scholar]

81. Quan B.D., Sone E.D. The effect of polyaspartate chain length on mediating biomimetic remineralization of collagenous tissues. J. R. Soc. Interface. 2018;15:20180269. doi: 10.1098/rsif.2018.0269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Zou Z., Tang T., Macías-Sánchez E., Sviben S., Landis W.J., Bertinetti L., Fratzl P. Three-dimensional structural interrelations between cells, extracellular matrix, and mineral in normally mineralizing avian leg tendon. Proc. Natl. Acad. Sci. USA. 2020 doi: 10.1073/pnas.1917932117. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Hor J.L., Wang H., Fakhraai Z., Lee D. Effect of Physical Nanoconfinement on the Viscosity of Unentangled Polymers during Capillary Rise Infiltration. Macromolecules. 2018;51:5069–5078. doi: 10.1021/acs.macromol.8b00966. [CrossRef] [Google Scholar]

84. Vinay T.V., Banuprasad T.N., George S.D., Varghese S., Varanakkottu S.N. Additive-Free Tunable Transport and Assembly of Floating Objects at Water-Air Interface Using Bubble-Mediated Capillary Forces. Adv. Mater. Interfaces. 2017;4:1601231. doi: 10.1002/admi.201601231. [CrossRef] [Google Scholar]

85. Feng J., Song Q., Zhang B., Wu Y., Wang T., Jiang L. Large-Scale, Long-Range-Ordered Patterning of Nanocrystals via Capillary-Bridge Manipulation. Adv. Mater. 2017;29:1703143. doi: 10.1002/adma.201703143. [PubMed] [CrossRef] [Google Scholar]

86. Shao C., Zhao R., Jiang S., Yao S., Wu Z., Jin B., Yang Y., Pan H., Tang R. Citrate improves collagen mineralization via interface wetting: A physicochemical understanding of biomineralization control. Adv. Mater. 2018;30:1704876. doi: 10.1002/adma.201704876. [PubMed] [CrossRef] [Google Scholar]

87. Qu Y., Gu T., Du Q., Shao C., Wang J., Jin B., Kong W., Sun J., Chen C., Pan H. Polydopamine Promotes Dentin Remineralization via Interfacial Control. ACS Biomater. Sci. Eng. 2020;6:3327–3334. doi: 10.1021/acsbiomaterials.0c00035. [PubMed] [CrossRef] [Google Scholar]

88. He L., Hao Y., Zhen L., Liu H., Shao M., Xu X., Liang K., Gao Y., Yuan H., Li J. Biomineralization of dentin. J. Struct. Biol. 2019;207:115–122. doi: 10.1016/j.jsb.2019.05.010. [PubMed] [CrossRef] [Google Scholar]

89. Wang X., Yang J., Andrei C.M., Soleymani L., Grandfield K. Biomineralization of calcium phosphate revealed by in situ liquid-phase electron microscopy. Commun. Chem. 2018;1:80. doi: 10.1038/s42004-018-0081-4. [CrossRef] [Google Scholar]

90. Yi H., Rehman F.U., Zhao C., Liu B., He N. Recent advances in nano scaffolds for bone repair. Bone Res. 2016;4:16050. doi: 10.1038/boneres.2016.50. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Zou L., Zhang Y., Liu X., Chen J., Zhang Q. Biomimetic mineralization on natural and synthetic polymers to prepare hybrid scaffolds for bone tissue engineering. Colloids Surf. B Biointerfaces. 2019;178:222–229. doi: 10.1016/j.colsurfb.2019.03.004. [PubMed] [CrossRef] [Google Scholar]

92. Liu Y., Luo D., Kou X.X., Wang X.D., Tay F.R., Sha Y.L., Gan Y.H., Zhou Y.H. Hierarchical intrafibrillar nanocarbonated apatite assembly improves the nanomechanics and cytocompatibility of mineralized collagen. Adv. Funct. Mater. 2013;23:1404–1411. doi: 10.1002/adfm.201201611. [CrossRef] [Google Scholar]

93. Zhang Z., Li Z., Zhang C., Liu J., Bai Y., Li S., Zhang C. Biomimetic intrafibrillar mineralized collagen promotes bone regeneration via activation of the Wnt signaling pathway. Int. J. Nanomed. 2018;13:7503. doi: 10.2147/IJN.S172164. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Chien Y.-C., Tao J., Saeki K., Chin A.F., Lau J.L., Chen C.-L., Zuckermann R.N., Marshall S.J., Marshall G.W., De Yoreo J.J. Using biomimetic polymers in place of noncollagenous proteins to achieve functional remineralization of dentin tissues. ACS Biomater. Sci. Eng. 2017;3:3469–3479. doi: 10.1021/acsbiomaterials.7b00378. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Chen R., Jin R., Li X., Fang X., Yuan D., Chen Z., Yao S., Tang R., Chen Z. Biomimetic remineralization of artificial caries dentin lesion using Ca/P-PILP. Dent. Mater. 2020;36:1397–1406. doi: 10.1016/j.dental.2020.08.017. [PubMed] [CrossRef] [Google Scholar]

96. Zhang Y., Wang Z., Jiang T., Wang Y. Biomimetic regulation of dentine remineralization by amino acid in vitro. Dent. Mater. 2019;35:298–309. doi: 10.1016/j.dental.2018.11.026. [PubMed] [CrossRef] [Google Scholar]

97. Barbosa-Martins L.F., Sousa J.P.d., Alves L.A., Davies R.P.W., Puppin-Rontanti R.M. Biomimetic mineralizing agents recover the micro tensile bond strength of demineralized dentin. Materials. 2018;11:1733. doi: 10.3390/ma11091733. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Cao C.Y., Mei M.L., Li Q.-L., Lo E.C.M., Chu C.H. Methods for biomimetic remineralization of human dentine: A systematic review. Int. J. Mol. Sci. 2015;16:4615–4627. doi: 10.3390/ijms16034615. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Zoch M.L., Clemens T.L., Riddle R.C. New insights into the biology of osteocalcin. Bone. 2016;82:42–49. doi: 10.1016/j.bone.2015.05.046. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Simon P., Grüner D., Worch H., Pompe W., Lichte H., El Khassawna T., Heiss C., Wenisch S., Kniep R. First evidence of octacalcium phosphate@ osteocalcin nanocomplex as skeletal bone component directing collagen triple–helix nanofibril mineralization. Sci. Rep. 2018;8:13696. doi: 10.1038/s41598-018-31983-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Moriishi T., Ozasa R., Ishimoto T., Nakano T., Hasegawa T., Miyazaki T., Liu W., Fukuyama R., Wang Y., Komori H. Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass. PLoS Genet. 2020;16:e1008586. doi: 10.1371/journal.pgen.1008586. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Zhao H., Chen Q., Alam A., Cui J., Suen K.C., Soo A.P., Eguchi S., Gu J., Ma D. The role of osteopontin in the progression of solid organ tumour. Cell Death Dis. 2018;9:356. doi: 10.1038/s41419-018-0391-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Zuo Q., Yao J., Lu S., Du Z., Li S., Lin F., Shi W., Zhang Y., Xiao Y. The role of organic phosphate in the spatial control of periodontium complex bio-mineralization: An in vitro study. J. Mater. Chem. B. 2019;7:5956–5965. doi: 10.1039/C9TB01261C. [PubMed] [CrossRef] [Google Scholar]

104. Ling Z., He Y., Huang H., Xie X., Li Q.-l., Cao C.Y. Effects of oligopeptide simulating DMP-1/mineral trioxide aggregate/agarose hydrogel biomimetic mineralisation model for the treatment of dentine hypersensitivity. J. Mater. Chem. B. 2019;7:5825–5833. doi: 10.1039/C9TB01684H. [PubMed] [CrossRef] [Google Scholar]

105. Brylka L., Jahnen-Dechent W. The role of fetuin-A in physiological and pathological mineralization. Calcified Tissue Int. 2013;93:355–364. doi: 10.1007/s00223-012-9690-6. [PubMed] [CrossRef] [Google Scholar]

106. Qi Y., Ye Z., Fok A., Holmes B.N., Espanol M., Ginebra M.-P., Aparicio C. Effects of molecular weight and concentration of poly (acrylic acid) on biomimetic mineralization of collagen. ACS Biomater. Sci. Eng. 2018;4:2758–2766. doi: 10.1021/acsbiomaterials.8b00512. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Wang Y., Van Manh N., Wang H., Zhong X., Zhang X., Li C. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects. Int. J. Nanomed. 2016;11:2053. [PMC free article] [PubMed] [Google Scholar]

108. Liu H., Lin M., Liu X., Zhang Y., Luo Y., Pang Y., Chen H., Zhu D., Zhong X., Ma S. Doping bioactive elements into a collagen scaffold based on synchronous self-assembly/mineralization for bone tissue engineering. Bioact. Mater. 2020;5:844–858. doi: 10.1016/j.bioactmat.2020.06.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Zheng B., Mao C., Gu T., Pan H., Shao C., Sun J., Chen C., Tang R., Gu X. Phosphorylated chitosan to promote biomimetic mineralization of type I collagen as a strategy for dentin repair and bone tissue engineering. New J. Chem. 2019;43:2002–2010. doi: 10.1039/C8NJ04889D. [CrossRef] [Google Scholar]

110. Lin X., Xie F., Ma X., Hao Y., Qin H., Long J. Fabrication and characterization of dendrimer-functionalized nano-hydroxyapatite and its application in dentin tubule occlusion. J. Biomater. Sci. Polym. Ed. 2017;28:846–863. doi: 10.1080/09205063.2017.1308654. [PubMed] [CrossRef] [Google Scholar]

111. Bapat R.A., Dharmadhikari S., Chaubal T.V., Amin M.C.I.M., Bapat P., Gorain B., Choudhury H., Vincent C., Kesharwani P. The potential of dendrimer in delivery of therapeutics for dentistry. Heliyon. 2019;5:e02544. doi: 10.1016/j.heliyon.2019.e02544. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. He H., Shao C., Mu Z., Mao C., Sun J., Chen C., Tang R., Gu X. Promotion effect of immobilized chondroitin sulfate on intrafibrillar mineralization of collagen. Carbohydr. Polym. 2020;229:115547. doi: 10.1016/j.carbpol.2019.115547. [PubMed] [CrossRef] [Google Scholar]

113. Su W., Ma L., Ran Y., Ma X., Yi Z., Chen G., Chen X., Li X. Alginate-Assisted Mineralization of Collagen by Collagen Reconstitution and Calcium Phosphate Formation. ACS Biomater. Sci. Eng. 2020;6:3275–3286. doi: 10.1021/acsbiomaterials.9b01841. [PubMed] [CrossRef] [Google Scholar]

114. Sun J.-L., Jiao K., Niu L.-N., Jiao Y., Song Q., Shen L.-J., Tay F.R., Chen J.-H. Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration. Biomaterials. 2017;113:203–216. doi: 10.1016/j.biomaterials.2016.10.050. [PubMed] [CrossRef] [Google Scholar]

115. Ma B., Huang Z., Liu N., Tang X., Dusabe E., Zhou B., Mao J. The Role of Genetically Engineered Peptides in Inducing Intrafibrillar Mineralization Using Calcium Phosphate Precursors. Sci. Adv. Mater. 2016;8:2204–2215. doi: 10.1166/sam.2016.2999. [CrossRef] [Google Scholar]

116. Gungormus M., Tulumbaci F. Peptide-assisted pre-bonding remineralization of dentin to improve bonding. J. Mech. Behav. Biomed. Mater. 2020;113:104119. doi: 10.1016/j.jmbbm.2020.104119. [PubMed] [CrossRef] [Google Scholar]

117. Mukherjee K., Visakan G., Phark J.-H., Moradian-Oldak J. Enhancing Collagen Mineralization with Amelogenin Peptide: Toward the Restoration of Dentin. ACS Biomater. Sci. Eng. 2020;6:2251–2262. doi: 10.1021/acsbiomaterials.9b01774. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Ma C., Tian X., Kim J.P., Xie D., Ao X., Shan D., Lin Q., Hudock M.R., Bai X., Yang J. Citrate-based materials fuel human stem cells by metabonegenic regulation. Proc. Natl. Acad. Sci. USA. 2018;115:E11741–E11750. doi: 10.1073/pnas.1813000115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Chen H., Wang Y., Dai H., Tian X., Cui Z.-K., Chen Z., Hu L., Song Q., Liu A., Zhang Z. Bone and plasma citrate is reduced in osteoporosis. Bone. 2018;114:189–197. doi: 10.1016/j.bone.2018.06.014. [PubMed] [CrossRef] [Google Scholar]

120. Olson T.Y., Orme C.A., Han T.Y.-J., Worsley M.A., Rose K.A., Satcher J.H., Kuntz J.D. Shape control synthesis of fluorapatite structures based on supersaturation: Prismatic nanowires, ellipsoids, star, and aggregate formation. CrystEngComm. 2012;14:6384–6389. doi: 10.1039/c2ce25711d. [CrossRef] [Google Scholar]

121. Pajor K., Pajchel L., Kolmas J. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology—A review. Materials. 2019;12:2683. doi: 10.3390/ma12172683. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Niu X., Fan R., Guo X., Du T., Yang Z., Feng Q., Fan Y. Shear-mediated orientational mineralization of bone apatite on collagen fibrils. J. Mater. Chem. B. 2017;5:9141–9147. doi: 10.1039/C7TB02223A. [PubMed] [CrossRef] [Google Scholar]

123. Du T., Niu X., Hou S., Xu M., Li Z., Li P., Fan Y. Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress. J. Mater. Chem. B. 2020;8:2562–2572. doi: 10.1039/C9TB02643F. [PubMed] [CrossRef] [Google Scholar]

Which of the following refers to the conscious control of thoughts and emotions to accomplish goals or solve problems quizlet?

a mnemonic strategy. A person who can consciously control his thoughts, emotions, and actions to accomplish goals or solve problems is displaying function.

Which of the following is true about the use of grammar and syntax by most 3 year olds quizlet?

Which of the following is true about the use of grammar and syntax by most 3-year-olds? They typically begin to use plurals, possessives, and past tense.

What is the tendency to focus on a single aspect of a situation while neglecting others?

In psychology, centration is the tendency to focus on one salient aspect of a situation and neglect other, possibly relevant aspects.

Which of the following is an example of constructive play?

Constructive play is when children manipulate their environment to create things. This type of play occurs when children build towers and cities with blocks, play in the sand, construct contraptions on the woodworking bench, and draw murals with chalk on the sidewalk.