Which of the following foods should the medical assistant recommend to a patient inquiring about ways to increase their dietary intake of folic acid?

1. Kreider RB, Wilborn CD, Taylor L, Campbell B, Almada AL, Collins R, Cooke M, Earnest CP, Greenwood M, Kalman DS, Kerksick CM, Kleiner SM, Leutholtz B, Lopez H, Lowery LM, Mendel R, Smith A, Spano M, Wildman R, Willoughby DS, Ziegenfuss TN, Antonio J. Issn exercise & sports nutrition review: research & recommendations. J Int Soc Sports Nutr. 2010;7(1):7. doi: 10.1186/1550-2783-7-7. [CrossRef] [Google Scholar]

2. Leutholtz B, Kreider R. Exercise and sport nutrition. In: Wilson T, Temple N, editors. Nutritional health. Totowa: Humana Press; 2001. pp. 207–239. [Google Scholar]

3. Williams MH. Nutrition for health, fitness, and sport. Dubuque: ACB/McGraw-Hill; 1999. [Google Scholar]

4. Kreider R, Leutholtz B, Katch F, Katch V. Exercise & sport nutrition. Santa Barbara: Fitness Technologies Press; 2009. (Series Editor)

5. Brown AC. An overview of herb and dietary supplement efficacy, safety and government regulations in the United States with suggested improvements. Part 1 of 5 series. Food Chem Toxicol. 2017;107(Pt A):449–471. doi: 10.1016/j.fct.2016.11.001. [PubMed] [CrossRef] [Google Scholar]

6. Lucado J, Mohamoud S, Zhao L, Elixhauser A. Infectious enteritis and foodborne illness in the United States, 2010: statistical brief #150. In: Healthcare cost and utilization project (hcup) statistical briefs. Rockville: Agency for Healthcare Research and Quality (US); 2006. https://www.ncbi.nlm.nih.gov/books/NBK137749/.

7. Brown AC. Kidney toxicity related to herbs and dietary supplements: online table of case reports. Part 3 of 5 series. Food Chem Toxicol. 2017;107(Pt A):502–519. doi: 10.1016/j.fct.2016.07.024. [PubMed] [CrossRef] [Google Scholar]

8. Jabbar SB, Hanly MG. Fatal caffeine overdose: a case report and review of literature. Am J Forensic Med Pathol. 2013;34(4):321–324. doi: 10.1097/PAF.0000000000000058. [PubMed] [CrossRef] [Google Scholar]

9. Beers MH, Berkow R. The merck manual. Whitehouse Station: Merck Research Laboratories; 1999. (Series Editor)

10. Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HL. International society of sports nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14:18. doi: 10.1186/s12970-017-0173-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Jager R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, Purpura M, Ziegenfuss TN, Ferrando AA, Arent SM, Smith-Ryan AE, Stout JR, Arciero PJ, Ormsbee MJ, Taylor LW, Wilborn CD, Kalman DS, Kreider RB, Willoughby DS, Hoffman JR, Krzykowski JL, Antonio J. International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2017;14:20. doi: 10.1186/s12970-017-0177-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Trexler ET, Smith-Ryan AE, Stout JR, Hoffman JR, Wilborn CD, Sale C, Kreider RB, Jager R, Earnest CP, Bannock L, Campbell B, Kalman D, Ziegenfuss TN, Antonio J. International society of sports nutrition position stand: Beta-alanine. J Int Soc Sports Nutr. 2015;12:30. doi: 10.1186/s12970-015-0090-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, Taylor L, Kalman D, Smith-Ryan AE, Kreider RB, Willoughby D, Arciero PJ, Vandusseldorp TA, Ormsbee MJ, Wildman R, Greenwood M, Ziegenfuss TN, Aragon AA, Antonio J. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017;14:33. doi: 10.1186/s12970-017-0189-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, Taylor L, Willoughby D, Stout J, Graves BS, Wildman R, Ivy JL, Spano M, Smith AE, Antonio J. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):5. doi: 10.1186/1550-2783-7-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, Wilborn C, Kalman DS, Stout JR, Hoffman JR, Ziegenfuss TN, Lopez HL, Kreider RB, Smith-Ryan AE, Antonio J. International society of sports nutrition position stand: Beta-hydroxy-beta-methylbutyrate (hmb) J Int Soc Sports Nutr. 2013;10(1):6. doi: 10.1186/1550-2783-10-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. La Bounty PM, Campbell BI, Wilson J, Galvan E, Berardi J, Kleiner SM, Kreider RB, Stout JR, Ziegenfuss T, Spano M, Smith A, Antonio J. International society of sports nutrition position stand: meal frequency. J Int Soc Sports Nutr. 2011;8:4. doi: 10.1186/1550-2783-8-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Campbell B, Wilborn C, La Bounty P, Taylor L, Nelson MT, Greenwood M, Ziegenfuss TN, Lopez HL, Hoffman JR, Stout JR, Schmitz S, Collins R, Kalman DS, Antonio J, Kreider RB. International society of sports nutrition position stand: energy drinks. J Int Soc Sports Nutr. 2013;10(1):1. doi: 10.1186/1550-2783-10-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Aragon AA, Schoenfeld BJ, Wildman R, Kleiner S, Vandusseldorp T, Taylor L, Earnest CP, Arciero PJ, Wilborn C, Kalman DS, Stout JR, Willoughby DS, Campbell B, Arent SM, Bannock L, Smith-Ryan AE, Antonio J. International society of sports nutrition position stand: diets and body composition. J Int Soc Sports Nutr. 2017;14:16. doi: 10.1186/s12970-017-0174-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Rodriguez NR, Di Marco NM, Langley S. American college of sports medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41(3):709–731. doi: 10.1249/MSS.0b013e31890eb86. [PubMed] [CrossRef] [Google Scholar]

20. Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, Rawson ES, Walsh NP, Garthe I, Geyer H, Meeusen R, Van Loon LJC, Shirreffs SM, Spriet LL, Stuart M, Vernec A, Currell K, Ali VM, Budgett RG, Ljungqvist A, Mountjoy M, Pitsiladis YP, Soligard T, Erdener U, Engebretsen L. Ioc consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med. 2018;52(7):439–455. doi: 10.1136/bjsports-2018-099027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Rawson ES, Miles MP, Larson-Meyer DE. Dietary supplements for health, adaptation, and recovery in athletes. Int J Sport Nutr Exerc Metab. 2018;28(2):188–99. [PubMed]

22. Burke LM. Energy needs of athletes. Can J Appl Physiol. 2001;26(Suppl):S202–S219. doi: 10.1139/h2001-055. [PubMed] [CrossRef] [Google Scholar]

23. Burke LM, Loucks AB, Broad N. Energy and carbohydrate for training and recovery. J Sports Sci. 2006;24(7):675–685. doi: 10.1080/02640410500482602. [PubMed] [CrossRef] [Google Scholar]

24. Kerksick CM, Kulovitz MG. Requirements of protein, carbohydrates and fats for athletes. In: Bagchi D, Nair S, Sen CK, editors. Nutrition and enhanced sports performance: recommendations for muscle building. London: Elsevier Publishers; 2013.

25. Manore MM. Weight management for athletes and active individuals: a brief review. Sports Med. 2015;45(Suppl 1):S83–S92. doi: 10.1007/s40279-015-0401-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Black KE, Skidmore PM, Brown RC. Energy intakes of ultraendurance cyclists during competition, an observational study. Int J Sport Nutr Exerc Metab. 2012;22(1):19–23. doi: 10.1123/ijsnem.22.1.19. [PubMed] [CrossRef] [Google Scholar]

27. Loucks AB. Energy balance and body composition in sports and exercise. J Sports Sci. 2004;22(1):1–14. doi: 10.1080/0264041031000140518. [PubMed] [CrossRef] [Google Scholar]

28. Barrero A, Erola P, Bescos R. Energy balance of triathletes during an ultra-endurance event. Nutrients. 2014;7(1):209–222. doi: 10.3390/nu7010209. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Brouns F, Saris WH, Stroecken J, Beckers E, Thijssen R, Rehrer NJ, Ten Hoor F. Eating, drinking, and cycling. A controlled tour de France simulation study, part i. Int J Sports Med. 1989;10(Suppl 1):S32–S40. doi: 10.1055/s-2007-1024952. [PubMed] [CrossRef] [Google Scholar]

30. Brouns F, Saris WH, Stroecken J, Beckers E, Thijssen R, Rehrer NJ, Ten Hoor F. Eating, drinking, and cycling. A controlled tour de France simulation study, part ii. Effect of diet manipulation. Int J Sports Med. 1989;10(Suppl 1):S41–S48. doi: 10.1055/s-2007-1024953. [PubMed] [CrossRef] [Google Scholar]

31. Heydenreich J, Kayser B, Schutz Y, Melzer K. Total energy expenditure, energy intake, and body composition in endurance athletes across the training season: a systematic review. Sports Med Open. 2017;3(1):8. doi: 10.1186/s40798-017-0076-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Kreider RB. Physiological considerations of ultraendurance performance. Int J Sport Nutr. 1991;1(1):3–27. doi: 10.1123/ijsn.1.1.3. [PubMed] [CrossRef] [Google Scholar]

33. Berning JR. Energy intake, diet, and muscle wasting. In: Kreider RB, Fry AC, O'Toole ML, editors. Overtraining in sport. Champaign: Human Kinetics; 1998. pp. 275–288. [Google Scholar]

34. Viner RT, Harris M, Berning JR, Meyer NL. Energy availability and dietary patterns of adult male and female competitive cyclists with lower than expected bone mineral density. Int J Sport Nutr Exerc Metab. 2015;25(6):594–602. doi: 10.1123/ijsnem.2015-0073. [PubMed] [CrossRef] [Google Scholar]

35. Wardenaar FC, Dijkhuizen R, Ceelen IJ, Jonk E, De Vries JH, Witkamp RF, Mensink M. Nutrient intake by ultramarathon runners: can they meet recommendations? Int J Sport Nutr Exerc Metab. 2015;25(4):375–386. doi: 10.1123/ijsnem.2014-0199. [PubMed] [CrossRef] [Google Scholar]

36. Fudge BW, Westerterp KR, Kiplamai FK, Onywera VO, Boit MK, Kayser B, Pitsiladis YP. Evidence of negative energy balance using doubly labelled water in elite kenyan endurance runners prior to competition. Br J Nutr. 2006;95(1):59–66. doi: 10.1079/BJN20051608. [PubMed] [CrossRef] [Google Scholar]

37. Burke LM. Practical sports nutrition. Champaign: Human Kinetics; 2007. [Google Scholar]

38. Burke LM, Deakin V. Clinical sports nutrition. Australia: McGraw Hill Education; 2015. [Google Scholar]

39. Melin A, Tornberg AB, Skouby S, Moller SS, Faber J, Sundgot-Borgen J, Sjodin A. Low-energy density and high fiber intake are dietary concerns in female endurance athletes. Scand J Med Sci Sports. 2016;26(9):1060–1071. doi: 10.1111/sms.12516. [PubMed] [CrossRef] [Google Scholar]

40. Sherman WM, Jacobs KA, Leenders N. Carbohydrate metabolism during endurance exercise. In: Kreider RB, Fry AC, O'Toole ML, editors. Overtraining in sport. Champaign: Human Kinetics Publishers; 1998. pp. 289–308. [Google Scholar]

41. Cermak NM, Van Loon LJ. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013;43(11):1139–1155. doi: 10.1007/s40279-013-0079-0. [PubMed] [CrossRef] [Google Scholar]

42. Williams C, Rollo I. Carbohydrate nutrition and team sport performance. Sports Med. 2015;45(Suppl 1):S13–S22. doi: 10.1007/s40279-015-0399-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Hawley JA, Leckey JJ. Carbohydrate dependence during prolonged, intense endurance exercise. Sports Med. 2015;45(Suppl 1):S5–12. doi: 10.1007/s40279-015-0400-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol. 1994;76(6):2253–2261. doi: 10.1152/jappl.1994.76.6.2253. [PubMed] [CrossRef] [Google Scholar]

45. Boorsma RK, Whitfield J, Spriet LL. Beetroot juice supplementation does not improve performance of elite 1500-m runners. Med Sci Sports Exerc. 2014;46(12):2326–2334. doi: 10.1249/MSS.0000000000000364. [PubMed] [CrossRef] [Google Scholar]

46. Stepto NK, Carey AL, Staudacher HM, Cummings NK, Burke LM, Hawley JA. Effect of short-term fat adaptation on high-intensity training. Med Sci Sports Exerc. 2002;34(3):449–455. doi: 10.1097/00005768-200203000-00011. [PubMed] [CrossRef] [Google Scholar]

47. Hawley JA, Burke LM, Angus DJ, Fallon KE, Martin DT, Febbraio MA. Effect of altering substrate availability on metabolism and performance during intense exercise. Br J Nutr. 2000;84(6):829–838. doi: 10.1017/S0007114500002440. [PubMed] [CrossRef] [Google Scholar]

48. Van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536(Pt 1):295–304. doi: 10.1111/j.1469-7793.2001.00295.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Phys. 1993;265(3 Pt 1):E380–E391. [PubMed] [Google Scholar]

50. Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29(Suppl 1):S17–S27. doi: 10.1080/02640414.2011.585473. [PubMed] [CrossRef] [Google Scholar]

51. Burke LM, Cox GR, Culmmings NK, Desbrow B. Guidelines for daily carbohydrate intake: do athletes achieve them? Sports Med. 2001;31(4):267–299. doi: 10.2165/00007256-200131040-00003. [PubMed] [CrossRef] [Google Scholar]

52. Ranchordas MK, Dawson JT, Russell M. Practical nutritional recovery strategies for elite soccer players when limited time separates repeated matches. J Int Soc Sports Nutr. 2017;14:35. doi: 10.1186/s12970-017-0193-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117–144. doi: 10.2165/00007256-200333020-00004. [PubMed] [CrossRef] [Google Scholar]

54. Rodriguez NR, Dimarco NM, Langley S, American Dietetic A, Dietitians Of C, American College of Sports Medicine N. Athletic P. Position of the american dietetic association, dietitians of Canada, and the american college of sports medicine: nutrition and athletic performance. J Am Diet Assoc. 2009;109(3):509–527. doi: 10.1016/j.jada.2009.01.005. [PubMed] [CrossRef] [Google Scholar]

55. Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40(2):275–281. doi: 10.1249/mss.0b013e31815adf19. [PubMed] [CrossRef] [Google Scholar]

56. Jeukendrup AE. Carbohydrate feeding during exercise. Eur J Sport Sci. 2008;8(2):77–86. doi: 10.1080/17461390801918971. [CrossRef] [Google Scholar]

57. Earnest CP, Lancaster SL, Rasmussen CJ, Kerksick CM, Lucia A, Greenwood MC, Almada AL, Cowan PA, Kreider RB. Low vs. high glycemic index carbohydrate gel ingestion during simulated 64-km cycling time trial performance. J Strength Cond Res. 2004;18(3):466–472. [PubMed] [Google Scholar]

58. Venables MC, Brouns F, Jeukendrup AE. Oxidation of maltose and trehalose during prolonged moderate-intensity exercise. Med Sci Sports Exerc. 2008;40(9):1653–1659. doi: 10.1249/MSS.0b013e318175716c. [PubMed] [CrossRef] [Google Scholar]

59. Jentjens RL, Jeukendrup AE. Effects of pre-exercise ingestion of trehalose, galactose and glucose on subsequent metabolism and cycling performance. Eur J Appl Physiol. 2003;88(4–5):459–465. doi: 10.1007/s00421-002-0729-7. [PubMed] [CrossRef] [Google Scholar]

60. Achten J, Jentjens RL, Brouns F, Jeukendrup AE. Exogenous oxidation of isomaltulose is lower than that of sucrose during exercise in men. J Nutr. 2007;137(5):1143–1148. doi: 10.1093/jn/137.5.1143. [PubMed] [CrossRef] [Google Scholar]

61. Jentjens R, Achten J, Jeukendrup AE. High rates of exogenous carbohydrate oxidation from multiple transportable carbohydrates ingested during prolonged exercise. Med Sci Sports Exerc. 2004;36(9):1551–1558. doi: 10.1249/01.MSS.0000139796.07843.1D. [PubMed] [CrossRef] [Google Scholar]

62. Jeukendrup AE, Jentjens R. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med. 2000;29(6):407–424. doi: 10.2165/00007256-200029060-00004. [PubMed] [CrossRef] [Google Scholar]

63. Rowlands DS, Wallis GA, Shaw C, Jentjens RL, Jeukendrup AE. Glucose polymer molecular weight does not affect exogenous carbohydrate oxidation. Med Sci Sports Exerc. 2005;37(9):1510–1516. doi: 10.1249/01.mss.0000177586.68399.f5. [PubMed] [CrossRef] [Google Scholar]

64. Oliver JM, Almada AL, Van Eck LE, Shah M, Mitchell JB, Jones MT, Jagim AR, Rowlands DS. Ingestion of high molecular weight carbohydrate enhances subsequent repeated maximal power: a randomized controlled trial. PLoS One. 2016;11(9):e0163009. doi: 10.1371/journal.pone.0163009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Leiper JB, Aulin KP, Soderlund K. Improved gastric emptying rate in humans of a unique glucose polymer with gel-forming properties. Scand J Gastroenterol. 2000;35(11):1143–1149. doi: 10.1080/003655200750056600. [PubMed] [CrossRef] [Google Scholar]

66. Piehl Aulin K, Soderlund K, Hultman E. Muscle glycogen resynthesis rate in humans after supplementation of drinks containing carbohydrates with low and high molecular masses. Eur J Appl Physiol. 2000;81(4):346–351. doi: 10.1007/s004210050053. [PubMed] [CrossRef] [Google Scholar]

67. Stephens FB, Roig M, Armstrong G, Greenhaff PL. Post-exercise ingestion of a unique, high molecular weight glucose polymer solution improves performance during a subsequent bout of cycling exercise. J Sports Sci. 2008;26(2):149–154. doi: 10.1080/02640410701361548. [PubMed] [CrossRef] [Google Scholar]

68. Pochmuller M, Schwingshackl L, Colombani PC, Hoffmann G. A systematic review and meta-analysis of carbohydrate benefits associated with randomized controlled competition-based performance trials. J Int Soc Sports Nutr. 2016;13:27. doi: 10.1186/s12970-016-0139-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Colombani PC, Mannhart C, Mettler S. Carbohydrates and exercise performance in non-fasted athletes: a systematic review of studies mimicking real-life. Nutr J. 2013;12:16. doi: 10.1186/1475-2891-12-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Lemon PW, Tarnopolsky MA, Macdougall JD, Atkinson SA. Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J Appl Physiol. 1992;73(2):767–775. doi: 10.1152/jappl.1992.73.2.767. [PubMed] [CrossRef] [Google Scholar]

71. Tarnopolsky MA, Macdougall JD, Atkinson SA. Influence of protein intake and training status on nitrogen balance and lean body mass. J Appl Physiol. 1988;64(1):187–193. doi: 10.1152/jappl.1988.64.1.187. [PubMed] [CrossRef] [Google Scholar]

72. Tarnopolsky MA, Atkinson SA, Macdougall JD, Chesley A, Phillips S, Schwarcz HP. Evaluation of protein requirements for trained strength athletes. J Appl Physiol. 1992;73(5):1986–1995. doi: 10.1152/jappl.1992.73.5.1986. [PubMed] [CrossRef] [Google Scholar]

73. Tarnopolsky MA. Protein and physical performance. Curr Opin Clin Nutr Metab Care. 1999;2(6):533–537. doi: 10.1097/00075197-199911000-00018. [PubMed] [CrossRef] [Google Scholar]

74. Kreider RB. Dietary supplements and the promotion of muscle growth with resistance exercise. Sports Med. 1999;27(2):97–110. doi: 10.2165/00007256-199927020-00003. [PubMed] [CrossRef] [Google Scholar]

75. Chesley A, Macdougall JD, Tarnopolsky MA, Atkinson SA, Smith K. Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol. 1992;73(4):1383–1388. doi: 10.1152/jappl.1992.73.4.1383. [PubMed] [CrossRef] [Google Scholar]

76. Phillips SM, Chevalier S, Leidy HJ. Protein “requirements” beyond the rda: implications for optimizing health. Appl Physiol Nutr Metab. 2016;41(5):565–572. doi: 10.1139/apnm-2015-0550. [PubMed] [CrossRef] [Google Scholar]

77. Phillips SM, Van Loon LJC. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 2011;29(Suppl 1):S29–S38. doi: 10.1080/02640414.2011.619204. [PubMed] [CrossRef] [Google Scholar]

78. Bandegan A, Courtney-Martin G, Rafii M, Pencharz PB, Lemon PW. Indicator amino acid-derived estimate of dietary protein requirement for male bodybuilders on a nontraining day is several-fold greater than the current recommended dietary allowance. J Nutr. 2017;147(5):850–857. doi: 10.3945/jn.116.236331. [PubMed] [CrossRef] [Google Scholar]

79. Tipton KD, Witard OC. Protein requirements and recommendations for athletes: relevance of ivory tower arguments for practical recommendations. Clin Sports Med. 2007;26(1):17–36. doi: 10.1016/j.csm.2006.11.003. [PubMed] [CrossRef] [Google Scholar]

80. Phillips SM. A brief review of higher dietary protein diets in weight loss: a focus on athletes. Sports Med. 2014;44(Suppl 2):S149–S153. doi: 10.1007/s40279-014-0254-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Tipton KD. Nutritional support for exercise-induced injuries. Sports Med. 2015;45(Suppl 1):S93–104. doi: 10.1007/s40279-015-0398-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Witard OC, Wardle SL, Macnaughton LS, Hodgson AB, Tipton KD. Protein considerations for optimising skeletal muscle mass in healthy young and older adults. Nutrients. 2016;8:181. doi: 10.3390/nu8040181. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Morton RW, Murphy KT, Mckellar SR, Schoenfeld BJ, Henselmans M, Helms E, Aragon AA, Devries MC, Banfield L, Krieger JW, Phillips SM. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52(6):376–384. [PMC free article] [PubMed] [Google Scholar]

84. Yang Y, Breen L, Burd NA, Hector AJ, Churchward-Venne TA, Josse AR, Tarnopolsky MA, Phillips SM. Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br J Nutr. 2012;108(10):1780–1788. doi: 10.1017/S0007114511007422. [PubMed] [CrossRef] [Google Scholar]

85. Wall BT, Gorissen SH, Pennings B, Koopman R, Groen BB, Verdijk LB, Van Loon LJ. Aging is accompanied by a blunted muscle protein synthetic response to protein ingestion. PLoS One. 2015;10(11):e0140903. doi: 10.1371/journal.pone.0140903. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, Phillips SM. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci. 2015;70(1):57–62. doi: 10.1093/gerona/glu103. [PubMed] [CrossRef] [Google Scholar]

87. Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, Prior T, Tarnopolsky MA, Phillips SM. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89(1):161–168. doi: 10.3945/ajcn.2008.26401. [PubMed] [CrossRef] [Google Scholar]

88. Witard OC, Jackman SR, Breen L, Smith K, Selby A, Tipton KD. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 2014;99(1):86–95. doi: 10.3945/ajcn.112.055517. [PubMed] [CrossRef] [Google Scholar]

89. Macnaughton LS, Wardle SL, Witard OC, Mcglory C, Hamilton DL, Jeromson S, Lawrence CE, Wallis GA, Tipton KD. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol Rep. 2016;4(15). [PMC free article] [PubMed]

90. Schoenfeld BJ, Aragon AA. How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. J Int Soc Sports Nutr. 2018;15:10. doi: 10.1186/s12970-018-0215-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Bucci L, Lm U. Proteins and amino acid supplements in exercise and sport. In: Driskell J, Wolinsky I, editors. Energy-yield macronutrients and energy metabolism in sports nutrition. Boca Raton: CRC Press; 2000. pp. 191–212. [Google Scholar]

92. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A. 1997;94(26):14930–14935. doi: 10.1073/pnas.94.26.14930. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, Ballevre O, Beaufrere B. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. 2001;280(2):E340–E348. doi: 10.1152/ajpendo.2001.280.2.E340. [PubMed] [CrossRef] [Google Scholar]

94. Boirie Y, Gachon P, Corny S, Fauquant J, Maubois JL, Beaufrere B. Acute postprandial changes in leucine metabolism as assessed with an intrinsically labeled milk protein. Am J Phys. 1996;271(6 Pt 1):E1083–E1091. [PubMed] [Google Scholar]

95. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 2009;107(3):987–992. doi: 10.1152/japplphysiol.00076.2009. [PubMed] [CrossRef] [Google Scholar]

96. Burd NA, Yang Y, Moore DR, Tang JE, Tarnopolsky MA, Phillips SM. Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. Micellar casein at rest and after resistance exercise in elderly men. Br J Nutr. 2012;108(6):958–962. doi: 10.1017/S0007114511006271. [PubMed] [CrossRef] [Google Scholar]

97. Yang Y, Churchward-Venne TA, Burd NA, Breen L, Tarnopolsky MA, Phillips SM. Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutr Metab (Lond) 2012;9(1):57. doi: 10.1186/1743-7075-9-57. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Joy JM, Lowery RP, Wilson JM, Purpura M, De Souza EO, Wilson SM, Kalman DS, Dudeck JE, Jager R. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutr J. 2013;12:86. doi: 10.1186/1475-2891-12-86. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Purpura M, Lowery RP, Joy JM, De Souza EO, Kalman D. A comparison of blood amino acid concentrations following ingestion of rice and whey protein isolate: a double-blind, crossover study. J Nutr Health Sci. 2014;1(3):306. [Google Scholar]

100. Minevich J, Olson MA, Mannion JP, Boublik JH, Mcpherson JO, Lowery RP, Shields K, Sharp M, Desouza EO, Wilson JM, Purpura M, Jager R. Digestive enzymes reduce quality differences between plant and animal proteins: a double-blind crossover study. J Int Soc Sports Nutr. 2015;12(Suppl 1):26. doi: 10.1186/1550-2783-12-S1-P26. [CrossRef] [Google Scholar]

101. Jager R, Purpura M, Farmer S, Cash HA, Keller D. Probiotic bacillus coagulans gbi-30, 6086 improves protein absorption and utilization. Probiotics Antimicro Prot. 2017; In Press [PMC free article] [PubMed]

102. Rittig N, Bach E, Thomsen HH, Moller AB, Hansen J, Johannsen M, Jensen E, Serena A, Jorgensen JO, Richelsen B, Jessen N, Moller N. Anabolic effects of leucine-rich whey protein, carbohydrate, and soy protein with and without beta-hydroxy-beta-methylbutyrate (hmb) during fasting-induced catabolism: a human randomized crossover trial. Clin Nutr. 2017;36(3):697–705. doi: 10.1016/j.clnu.2016.05.004. [PubMed] [CrossRef] [Google Scholar]

103. Babault N, Paizis C, Deley G, Guerin-Deremaux L, Saniez MH, Lefranc-Millot C, Allaert FA. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, placebo-controlled clinical trial vs. whey protein. J Int Soc Sports Nutr. 2015;12(1):3. doi: 10.1186/s12970-014-0064-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Venkatraman JT, Leddy J, Pendergast D. Dietary fats and immune status in athletes: clinical implications. Med Sci Sports Exerc. 2000;32(7 Suppl):S389–S395. doi: 10.1097/00005768-200007001-00003. [PubMed] [CrossRef] [Google Scholar]

105. Dorgan JF, Judd JT, Longcope C, Brown C, Schatzkin A, Clevidence BA, Campbell WS, Nair PP, Franz C, Kahle L, Taylor PR. Effects of dietary fat and fiber on plasma and urine androgens and estrogens in men: a controlled feeding study. Am J Clin Nutr. 1996;64(6):850–855. doi: 10.1093/ajcn/64.6.850. [PubMed] [CrossRef] [Google Scholar]

106. Hamalainen EK, Adlercreutz H, Puska P, Pietinen P. Decrease of serum total and free testosterone during a low-fat high-fibre diet. J Steroid Biochem. 1983;18(3):369–370. doi: 10.1016/0022-4731(83)90117-6. [PubMed] [CrossRef] [Google Scholar]

107. Reed MJ, Cheng RW, Simmonds M, Richmond W, James VH. Dietary lipids: an additional regulator of plasma levels of sex hormone binding globulin. J Clin Endocrinol Metab. 1987;64(5):1083–1085. doi: 10.1210/jcem-64-5-1083. [PubMed] [CrossRef] [Google Scholar]

108. Fry AC, Kraemer WJ, Ramsey LT. Pituitary-adrenal-gonadal responses to high-intensity resistance exercise overtraining. J Appl Physiol. 1998;85(6):2352–2359. doi: 10.1152/jappl.1998.85.6.2352. [PubMed] [CrossRef] [Google Scholar]

109. Miller WC, Koceja DM, Hamilton EJ. A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int J Obes Relat Metab Disord. 1997;21(10):941–947. doi: 10.1038/sj.ijo.0800499. [PubMed] [CrossRef] [Google Scholar]

110. Miller WC. Effective diet and exercise treatments for overweight and recommendations for intervention. Sports Med. 2001;31(10):717–724. doi: 10.2165/00007256-200131100-00002. [PubMed] [CrossRef] [Google Scholar]

111. Pirozzo S, Summerbell C, Cameron C, Glasziou P. Should we recommend low-fat diets for obesity? Obes Rev. 2003;4(2):83–90. doi: 10.1046/j.1467-789X.2003.00099.x. [PubMed] [CrossRef] [Google Scholar]

112. Burke LM. Re-examining high-fat diets for sports performance: did we call the ‘nail in the coffin’ too soon? Sports Med. 2015;45(Suppl 1):S33–S49. doi: 10.1007/s40279-015-0393-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Yeo WK, Carey AL, Burke L, Spriet LL, Hawley JA. Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab. 2011;36(1):12–22. doi: 10.1139/H10-089. [PubMed] [CrossRef] [Google Scholar]

114. Leckey JJ, Hoffman NJ, Parr EB, Devlin BL, Trewin AJ, Stepto NK, Morton JP, Burke LM, Hawley JA. High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans. FASEB J. 2018;32(6):2979–2991. doi: 10.1096/fj.201700993R. [PubMed] [CrossRef] [Google Scholar]

115. Burke LM, Ross ML, Garvican-Lewis LA, Welvaert M, Heikura IA, Forbes SG, Mirtschin JG, Cato LE, Strobel N, Sharma AP, Hawley JA. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol. 2017;595(9):2785–2807. doi: 10.1113/JP273230. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, Murray AJ, Stubbs B, West J, Mclure SW, King MT, Dodd MS, Holloway C, Neubauer S, Drawer S, Veech RL, Griffin JL, Clarke K. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 2016;24(2):256–268. doi: 10.1016/j.cmet.2016.07.010. [PubMed] [CrossRef] [Google Scholar]

117. Jabekk PT, Moe IA, Meen HD, Tomten SE, Hostmark AT. Resistance training in overweight women on a ketogenic diet conserved lean body mass while reducing body fat. Nutr Metab (Lond) 2010;7:17. doi: 10.1186/1743-7075-7-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Carli G, Bonifazi M, Lodi L, Lupo C, Martelli G, Viti A. Changes in the exercise-induced hormone response to branched chain amino acid administration. Eur J Appl Physiol Occup Physiol. 1992;64(3):272–277. doi: 10.1007/BF00626291. [PubMed] [CrossRef] [Google Scholar]

119. Cade JR, Reese RH, Privette RM, Hommen NM, Rogers JL, Fregly MJ. Dietary intervention and training in swimmers. Eur J Appl Physiol Occup Physiol. 1991;63(3–4):210–215. doi: 10.1007/BF00233850. [PubMed] [CrossRef] [Google Scholar]

120. Zawadzki KM, Yaspelkis BB, 3rd, Ivy JL. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72(5):1854–1859. doi: 10.1152/jappl.1992.72.5.1854. [PubMed] [CrossRef] [Google Scholar]

121. Saunders MJ, Luden ND, Herrick JE. Consumption of an oral carbohydrate-protein gel improves cycling endurance and prevents postexercise muscle damage. J Strength Cond Res. 2007;21(3):678–684. [PubMed] [Google Scholar]

122. Saunders MJ, Kane MD, Todd MK. Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. Med Sci Sports Exerc. 2004;36(7):1233–1238. doi: 10.1249/01.MSS.0000132377.66177.9F. [PubMed] [CrossRef] [Google Scholar]

123. Nieman DC, Fagoaga OR, Butterworth DE, Warren BJ, Utter A, Davis JM, Henson DA, Nehlsen-Cannarella SL. Carbohydrate supplementation affects blood granulocyte and monocyte trafficking but not function after 2.5 h or running. Am J Clin Nutr. 1997;66(1):153–159. doi: 10.1093/ajcn/66.1.153. [PubMed] [CrossRef] [Google Scholar]

124. Nieman DC. Influence of carbohydrate on the immune response to intensive, prolonged exercise. Exerc Immunol Rev. 1998;4:64–76. [PubMed] [Google Scholar]

125. Nieman DC. Nutrition, exercise, and immune system function. Clin Sports Med. 1999;18(3):537–548. doi: 10.1016/S0278-5919(05)70167-8. [PubMed] [CrossRef] [Google Scholar]

126. Burke LM. Nutritional practices of male and female endurance cyclists. Sports Med. 2001;31(7):521–532. doi: 10.2165/00007256-200131070-00007. [PubMed] [CrossRef] [Google Scholar]

127. Burke LM. Nutrition for post-exercise recovery. Aust J Sci Med Sport. 1997;29(1):3–10. [PubMed] [Google Scholar]

128. Maughan RJ, Noakes TD. Fluid replacement and exercise stress. A brief review of studies on fluid replacement and some guidelines for the athlete. Sports Med. 1991;12(1):16–31. doi: 10.2165/00007256-199112010-00003. [PubMed] [CrossRef] [Google Scholar]

129. Widrick JJ, Costill DL, Fink WJ, Hickey MS, Mcconell GK, Tanaka H. Carbohydrate feedings and exercise performance: effect of initial muscle glycogen concentration. J Appl Physiol. 1993;74(6):2998–3005. doi: 10.1152/jappl.1993.74.6.2998. [PubMed] [CrossRef] [Google Scholar]

130. Tarnopolsky MA, Bosman M, Macdonald JR, Vandeputte D, Martin J, Roy BD. Postexercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women. J Appl Physiol. 1997;83(6):1877–1883. doi: 10.1152/jappl.1997.83.6.1877. [PubMed] [CrossRef] [Google Scholar]

131. Kraemer WJ, Volek JS, Bush JA, Putukian M, Sebastianelli WJ. Hormonal responses to consecutive days of heavy-resistance exercise with or without nutritional supplementation. J Appl Physiol. 1998;85(4):1544–1555. doi: 10.1152/jappl.1998.85.4.1544. [PubMed] [CrossRef] [Google Scholar]

132. Jentjens R, Van Loon L, Mann CH, Wagenmakers AJM, Jeukendrup AE. Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis. J Appl Physiol. 2001;91:839–846. doi: 10.1152/jappl.2001.91.2.839. [PubMed] [CrossRef] [Google Scholar]

133. Kerksick C, Harvey T, Stout J, Campbell B, Wilborn C, Kreider R, Kalman D, Ziegenfuss T, Lopez H, Landis J, Ivy JL, Antonio J. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2008;5:17. doi: 10.1186/1550-2783-5-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Weight LM, Myburgh KH, Noakes TD. Vitamin and mineral supplementation: effect on the running performance of trained athletes. Am J Clin Nutr. 1988;47(2):192–195. doi: 10.1093/ajcn/47.2.192. [PubMed] [CrossRef] [Google Scholar]

135. Gomes EC, Allgrove JE, Florida-James G, Stone V. Effect of vitamin supplementation on lung injury and running performance in a hot, humid, and ozone-polluted environment. Scand J Med Sci Sports. 2011;21(6):e452–e460. doi: 10.1111/j.1600-0838.2011.01366.x. [PubMed] [CrossRef] [Google Scholar]

136. Fry AC, Bloomer RJ, Falvo MJ, Moore CA, Schilling BK, Weiss LW. Effect of a liquid multivitamin/mineral supplement on anaerobic exercise performance. Res Sports Med. 2006;14(1):53–64. doi: 10.1080/15438620500528323. [PubMed] [CrossRef] [Google Scholar]

137. Cobley JN, Marrin K. Vitamin e supplementation does not alter physiological performance at fixed blood lactate concentrations in trained runners. J Sports Med Phys Fitness. 2012;52(1):63–70. [PubMed] [Google Scholar]

138. Van Der Beek EJ. Vitamin supplementation and physical exercise performance. J Sports Sci 1991; 9 Spec No:77–90. [PubMed]

139. Williams MH. Vitamin supplementation and athletic performance. Int J Vitam Nutr Res Suppl. 1989;30:163–191. [PubMed] [Google Scholar]

140. Paschalis V, Theodorou AA, Kyparos A, Dipla K, Zafeiridis A, Panayiotou G, Vrabas IS, Nikolaidis MG. Low vitamin c values are linked with decreased physical performance and increased oxidative stress: reversal by vitamin c supplementation. Eur J Nutr. 2016;55(1):45–53. doi: 10.1007/s00394-014-0821-x. [PubMed] [CrossRef] [Google Scholar]

141. Paulsen G, Cumming KT, Holden G, Hallen J, Ronnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen F, Wiig H, Ulseth ET, Garthe I, Blomhoff R, Benestad HB, Raastad T. Vitamin c and e supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol. 2014;592(Pt 8):1887–1901. doi: 10.1113/jphysiol.2013.267419. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Nikolaidis MG, Kerksick CM, Lamprecht M, Mcanulty SR. Does vitamin c and e supplementation impair the favorable adaptations of regular exercise? Oxidative Med Cell Longev. 2012;2012:707941. [PMC free article] [PubMed] [Google Scholar]

143. Morrison D, Hughes J, Della Gatta PA, Mason S, Lamon S, Russell AP, Wadley GD. Vitamin c and e supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radic Biol Med. 2015;89:852–862. doi: 10.1016/j.freeradbiomed.2015.10.412. [PubMed] [CrossRef] [Google Scholar]

144. Peternelj TT, Coombes JS. Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Med. 2011;41(12):1043–1069. doi: 10.2165/11594400-000000000-00000. [PubMed] [CrossRef] [Google Scholar]

145. Bartoszewska M, Kamboj M, Patel DR. Vitamin d, muscle function, and exercise performance. Pediatr Clin N Am. 2010;57(3):849–861. doi: 10.1016/j.pcl.2010.03.008. [PubMed] [CrossRef] [Google Scholar]

146. Tomlinson PB, Joseph C, Angioi M. Effects of vitamin d supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis. J Sci Med Sport. 2015;18(5):575–580. doi: 10.1016/j.jsams.2014.07.022. [PubMed] [CrossRef] [Google Scholar]

147. Close GL, Leckey J, Patterson M, Bradley W, Owens DJ, Fraser WD, Morton JP. The effects of vitamin d(3) supplementation on serum total 25[oh]d concentration and physical performance: a randomised dose-response study. Br J Sports Med. 2013;47(11):692–696. doi: 10.1136/bjsports-2012-091735. [PubMed] [CrossRef] [Google Scholar]

148. Dubnov-Raz G, Livne N, Raz R, Cohen AH, Constantini NW. Vitamin d supplementation and physical performance in adolescent swimmers. Int J Sport Nutr Exerc Metab. 2015;25(4):317–325. doi: 10.1123/ijsnem.2014-0180. [PubMed] [CrossRef] [Google Scholar]

149. Wyon MA, Koutedakis Y, Wolman R, Nevill AM, Allen N. The influence of winter vitamin d supplementation on muscle function and injury occurrence in elite ballet dancers: a controlled study. J Sci Med Sport. 2014;17(1):8–12. doi: 10.1016/j.jsams.2013.03.007. [PubMed] [CrossRef] [Google Scholar]

150. Blumberg JB, Cena H, Barr SI, Biesalski HK, Dagach RU, Delaney B, Frei B, Moreno Gonzalez MI, Hwalla N, Lategan-Potgieter R, Mcnulty H, Van Der Pols JC, Winichagoon P, Li D. The use of multivitamin/multimineral supplements: a modified delphi consensus panel report. Clin Ther. 2018;40(4):640–657. doi: 10.1016/j.clinthera.2018.02.014. [PubMed] [CrossRef] [Google Scholar]

151. Thomas DT, Erdman KA, Burke LM. American college of sports medicine joint position statement. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48(3):543–568. doi: 10.1249/MSS.0000000000000852. [PubMed] [CrossRef] [Google Scholar]

152. Singh A, Moses FM, Deuster PA. Chronic multivitamin-mineral supplementation does not enhance physical performance. Med Sci Sports Exerc. 1992;24(6):726–732. doi: 10.1249/00005768-199206000-00017. [PubMed] [CrossRef] [Google Scholar]

153. Telford RD, Catchpole EA, Deakin V, Hahn AG, Plank AW. The effect of 7 to 8 months of vitamin/mineral supplementation on athletic performance. Int J Sport Nutr. 1992;2(2):135–153. doi: 10.1123/ijsn.2.2.135. [PubMed] [CrossRef] [Google Scholar]

154. Steinbaugh M. Nutritional needs of female athletes. Clin Sports Med. 1984;3(3):649–670. [PubMed] [Google Scholar]

155. Dellavalle DM. Iron supplementation for female athletes: effects on iron status and performance outcomes. Curr Sports Med Rep. 2013;12(4):234–239. doi: 10.1249/JSR.0b013e31829a6f6b. [PubMed] [CrossRef] [Google Scholar]

156. Zourdos MC, Sanchez-Gonzalez MA, Mahoney SE. A brief review: the implications of iron supplementation for marathon runners on health and performance. J Strength Cond Res. 2015;29(2):559–565. doi: 10.1519/JSC.0000000000000636. [PubMed] [CrossRef] [Google Scholar]

157. Buck CL, Wallman KE, Dawson B, Guelfi KJ. Sodium phosphate as an ergogenic aid. Sports Med. 2013;43(6):425–435. doi: 10.1007/s40279-013-0042-0. [PubMed] [CrossRef] [Google Scholar]

158. Jeukendrup AE, Currell K, Clarke J, Cole J, Blannin AK. Effect of beverage glucose and sodium content on fluid delivery. Nutr Metab (Lond) 2009;6:9. doi: 10.1186/1743-7075-6-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Rehrer NJ. Fluid and electrolyte balance in the ultra-endurance sport. Sports Med. 2001;31(10):701–715. doi: 10.2165/00007256-200131100-00001. [PubMed] [CrossRef] [Google Scholar]

160. Sawka MN, Montain SJ. Fluid and electrolyte supplementation for exercise heat stress. Am J Clin Nutr. 2000;72(2 Suppl):564S–572S. doi: 10.1093/ajcn/72.2.564S. [PubMed] [CrossRef] [Google Scholar]

161. Shirreffs SM, Armstrong LE, Cheuvront SN. Fluid and electrolyte needs for preparation and recovery from training and competition. J Sports Sci. 2004;22(1):57–63. doi: 10.1080/0264041031000140572. [PubMed] [CrossRef] [Google Scholar]

162. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American college of sports medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–390. doi: 10.1249/mss.0b013e31802ca597. [PubMed] [CrossRef] [Google Scholar]

163. Brouns F, Kovacs EM, Senden JM. The effect of different rehydration drinks on post-exercise electrolyte excretion in trained athletes. Int J Sports Med. 1998;19(1):56–60. doi: 10.1055/s-2007-971881. [PubMed] [CrossRef] [Google Scholar]

164. Kovacs EM, Senden JM, Brouns F. Urine color, osmolality and specific electrical conductance are not accurate measures of hydration status during postexercise rehydration. J Sports Med Phys Fitness. 1999;39(1):47–53. [PubMed] [Google Scholar]

165. Kovacs EM, Schmahl RM, Senden JM, Brouns F. Effect of high and low rates of fluid intake on post-exercise rehydration. Int J Sport Nutr Exerc Metab. 2002;12(1):14–23. doi: 10.1123/ijsnem.12.1.14. [PubMed] [CrossRef] [Google Scholar]

166. Meyer LG, Horrigan DJ, Jr, Lotz WG. Effects of three hydration beverages on exercise performance during 60 hours of heat exposure. Aviat Space Environ Med. 1995;66(11):1052–1057. [PubMed] [Google Scholar]

167. Casa DJ, Clarkson PM, Roberts WO. American college of sports medicine roundtable on hydration and physical activity: consensus statements. Curr Sports Med Rep. 2005;4(3):115–127. doi: 10.1097/01.CSMR.0000306194.67241.76. [PubMed] [CrossRef] [Google Scholar]

168. Wilson GJ, Wilson JM, Manninen AH. Effects of beta-hydroxy-beta-methylbutyrate (hmb) on exercise performance and body composition across varying levels of age, sex, and training experience: a review. Nutr Metab (Lond) 2008;5:1. doi: 10.1186/1743-7075-5-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Gallagher PM, Carrithers JA, Godard MP, Schulze KE, Trappe SW. Beta-hydroxy-beta-methylbutyrate ingestion, part i: effects on strength and fat free mass. Med Sci Sports Exerc. 2000;32(12):2109–2115. doi: 10.1097/00005768-200012000-00022. [PubMed] [CrossRef] [Google Scholar]

170. Gallagher PM, Carrithers JA, Godard MP, Schulze KE, Trappe SW. Beta-hydroxy-beta-methylbutyrate ingestion, part ii: effects on hematology, hepatic and renal function. Med Sci Sports Exerc. 2000;32(12):2116–2119. doi: 10.1097/00005768-200012000-00023. [PubMed] [CrossRef] [Google Scholar]

171. Nissen S, Sharp R, Ray M. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance exercise testing. J Am Physiol. 1996;81:2095–2104. [PubMed] [Google Scholar]

172. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite beta-hydroxy-beta- methylbutyrate (hmb) during resistance training. Nutrition. 2000;16(9):734–739. doi: 10.1016/S0899-9007(00)00376-2. [PubMed] [CrossRef] [Google Scholar]

173. Slater GJ, Jenkins D. Beta-hydroxy-beta-methylbutyrate (hmb) supplementation and the promotion of muscle growth and strength. Sports Med. 2000;30(2):105–116. doi: 10.2165/00007256-200030020-00004. [PubMed] [CrossRef] [Google Scholar]

174. Vukovich MD, Slater G, Macchi MB, Turner MJ, Fallon K, Boston T, Rathmacher J. Beta-hydroxy-beta-methylbutyrate (hmb) kinetics and the influence of glucose ingestion in humans. J Nutr Biochem. 2001;12(11):631–639. doi: 10.1016/S0955-2863(01)00182-6. [PubMed] [CrossRef] [Google Scholar]

175. Kreider RB, Ferreira M, Wilson M, Almada AL. Effects of calcium beta-hydroxy-beta-methylbutyrate (hmb) supplementation during resistance-training on markers of catabolism, body composition and strength. Int J Sports Med. 1999;20(8):503–509. doi: 10.1055/s-1999-8835. [PubMed] [CrossRef] [Google Scholar]

176. Slater G, Jenkins D, Logan P, Lee H, Vukovich M, Rathmacher JA, Hahn AG. Beta-hydroxy-beta-methylbutyrate (hmb) supplementation does not affect changes in strength or body composition during resistance training in trained men. Int J Sport Nutr Exerc Metab. 2001;11(3):384–396. doi: 10.1123/ijsnem.11.3.384. [PubMed] [CrossRef] [Google Scholar]

177. Ransone J, Neighbors K, Lefavi R, Chromiak J. The effect of beta-hydroxy beta-methylbutyrate on muscular strength and body composition in collegiate football players. J Strength Cond Res. 2003;17(1):34–39. [PubMed] [Google Scholar]

178. Durkalec-Michalski K, Jeszka J. The efficacy of a beta-hydroxy-beta-methylbutyrate supplementation on physical capacity, body composition and biochemical markers in elite rowers: a randomised, double-blind, placebo-controlled crossover study. J Int Soc Sports Nutr. 2015;12:31. doi: 10.1186/s12970-015-0092-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Durkalec-Michalski K, Jeszka J. The effect of beta-hydroxy-beta-methylbutyrate on aerobic capacity and body composition in trained athletes. J Strength Cond Res. 2016;30(9):2617–2626. doi: 10.1519/JSC.0000000000001361. [PubMed] [CrossRef] [Google Scholar]

180. Durkalec-Michalski K, Jeszka J, Podgorski T. The effect of a 12-week beta-hydroxy-beta-methylbutyrate (hmb) supplementation on highly-trained combat sports athletes: a randomised, double-blind, placebo-controlled crossover study. Nutrients. 2017;9(7). [PMC free article] [PubMed]

181. Williams MH, Kreider R, Branch JD. Creatine: the power supplement. Champaign: Human Kinetics; 1999. [Google Scholar]

182. Kreider RB. Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem. 2003;244(1–2):89–94. doi: 10.1023/A:1022465203458. [PubMed] [CrossRef] [Google Scholar]

183. Volek JS, Duncan ND, Mazzetti SA, Staron RS, Putukian M, Gomez AL, Pearson DR, Fink WJ, Kraemer WJ. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med Sci Sports Exerc. 1999;31(8):1147–1156. doi: 10.1097/00005768-199908000-00011. [PubMed] [CrossRef] [Google Scholar]

184. Willoughby DS, Rosene J. Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sports Exerc. 2001;33(10):1674–1681. doi: 10.1097/00005768-200110000-00010. [PubMed] [CrossRef] [Google Scholar]

185. Willoughby DS, Rosene JM. Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exerc. 2003;35(6):923–929. doi: 10.1249/01.MSS.0000069746.05241.F0. [PubMed] [CrossRef] [Google Scholar]

186. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol. 2006;573(Pt 2):525–534. doi: 10.1113/jphysiol.2006.107359. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

187. Kreider R, Melton C, Hunt J, Rasmussen C, Ransom J, Stroud T, Cantler E, Milnor P. Creatine does not increase incidence of cramping or injury during pre-season college football training i. Med Sci Sports Exerc. 1999;31(5):S355. doi: 10.1097/00005768-199905001-01790. [CrossRef] [Google Scholar]

188. Kreider RB, Melton C, Rasmussen CJ, Greenwood M, Lancaster S, Cantler EC, Milnor P, Almada AL. Long-term creatine supplementation does not significantly affect clinical markers of health in athletes. Mol Cell Biochem. 2003;244(1–2):95–104. doi: 10.1023/A:1022469320296. [PubMed] [CrossRef] [Google Scholar]

189. Graham AS, Hatton RC. Creatine: a review of efficacy and safety. J Am Pharm Assoc (Wash) 1999;39(6):803–810. [PubMed] [Google Scholar]

190. Juhn MS, Tarnopolsky M. Potential side effects of oral creatine supplementation: a critical review. Clin J Sport Med. 1998;8(4):298–304. doi: 10.1097/00042752-199810000-00007. [PubMed] [CrossRef] [Google Scholar]

191. Mayhew DL, Mayhew JL, Ware JS. Effects of long-term creatine supplementation on liver and kidney functions in american college football players. Int J Sport Nutr Exerc Metab. 2002;12(4):453–460. doi: 10.1123/ijsnem.12.4.453. [PubMed] [CrossRef] [Google Scholar]

192. Gualano B, Ugrinowitsch C, Novaes RB, Artioli GG, Shimizu MH, Seguro AC, Harris RC, Lancha AH., Jr Effects of creatine supplementation on renal function: a randomized, double-blind, placebo-controlled clinical trial. Eur J Appl Physiol. 2008;103(1):33–40. doi: 10.1007/s00421-007-0669-3. [PubMed] [CrossRef] [Google Scholar]

193. Kim HJ, Kim CK, Carpentier A, Poortmans JR. Studies on the safety of creatine supplementation. Amino Acids. 2011;40(5):1409–1418. doi: 10.1007/s00726-011-0878-2. [PubMed] [CrossRef] [Google Scholar]

194. Taes YE, Delanghe JR, Wuyts B, Van De Voorde J, Lameire NH. Creatine supplementation does not affect kidney function in an animal model with pre-existing renal failure. Nephrol Dial Transplant. 2003;18(2):258–264. doi: 10.1093/ndt/18.2.258. [PubMed] [CrossRef] [Google Scholar]

195. Schilling BK, Stone MH, Utter A, Kearney JT, Johnson M, Coglianese R, Smith L, O'bryant HS, Fry AC, Starks M, Keith R, Stone ME. Creatine supplementation and health variables: a retrospective study. Med Sci Sports Exerc. 2001;33(2):183–188. doi: 10.1097/00005768-200102000-00002. [PubMed] [CrossRef] [Google Scholar]

196. Dalbo VJ, Roberts MD, Stout JR, Kerksick CM. Putting to rest the myth of creatine supplementation leading to muscle cramps and dehydration. Br J Sports Med. 2008;42(7):567–573. doi: 10.1136/bjsm.2007.042473. [PubMed] [CrossRef] [Google Scholar]

197. Greenwood M, Kreider RB, Greenwood L, Byars A. Cramping and injury incidence in collegiate football players are reduced by creatine supplementation. J Athl Train. 2003;38(3):216–219. [PMC free article] [PubMed] [Google Scholar]

198. Greenwood M, Kreider R, Greenwood L, Earnest C, Farris J, Brown L. Effects of creatine supplementation on the incidence of cramping/injury during eighteen weeks of collegiate baseball training/competition. Med Sci Sport Exerc. 2002;34:S146. [Google Scholar]

199. Watsford ML, Murphy AJ, Spinks WL, Walshe AD. Creatine supplementation and its effect on musculotendinous stiffness and performance. J Strength Cond Res. 2003;17(1):26–33. [PubMed] [Google Scholar]

200. Biolo G, Tipton KD, Klein S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Phys. 1997;273(1 Pt 1):E122–E129. [PubMed] [Google Scholar]

201. Tipton KD, Borsheim E, Wolf SE, Sanford AP, Wolfe RR. Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am J Physiol Endocrinol Metab. 2003;284(1):E76–E89. doi: 10.1152/ajpendo.00234.2002. [PubMed] [CrossRef] [Google Scholar]

202. Wolfe RR. Regulation of muscle protein by amino acids. J Nutr. 2002;132(10):3219S–3224S. doi: 10.1093/jn/131.10.3219S. [PubMed] [CrossRef] [Google Scholar]

203. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 2000;88(2):386–392. doi: 10.1152/jappl.2000.88.2.386. [PubMed] [CrossRef] [Google Scholar]

204. Borsheim E, Tipton KD, Wolf SE, Wolfe RR. Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab. 2002;283(4):E648–E657. doi: 10.1152/ajpendo.00466.2001. [PubMed] [CrossRef] [Google Scholar]

205. Rasmussen BB, Wolfe RR, Volpi E. Oral and intravenously administered amino acids produce similar effects on muscle protein synthesis in the elderly. J Nutr Health Aging. 2002;6(6):358–362. [PMC free article] [PubMed] [Google Scholar]

206. Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR. Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc. 2003;35(3):449–455. doi: 10.1249/01.MSS.0000053910.63105.45. [PubMed] [CrossRef] [Google Scholar]

207. Kobayashi H, Borsheim E, Anthony TG, Traber DL, Badalamenti J, Kimball SR, Jefferson LS, Wolfe RR. Reduced amino acid availability inhibits muscle protein synthesis and decreases activity of initiation factor eif2b. Am J Physiol Endocrinol Metab. 2003;284(3):E488–E498. doi: 10.1152/ajpendo.00094.2002. [PubMed] [CrossRef] [Google Scholar]

208. Biolo G, Williams BD, Fleming RY, Wolfe RR. Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes. 1999;48(5):949–957. doi: 10.2337/diabetes.48.5.949. [PubMed] [CrossRef] [Google Scholar]

209. Gorissen SH, Remond D, Van Loon LJ. The muscle protein synthetic response to food ingestion. Meat Sci. 2015;109:96–100. doi: 10.1016/j.meatsci.2015.05.009. [PubMed] [CrossRef] [Google Scholar]

210. Mitchell CJ, Churchward-Venne TA, Parise G, Bellamy L, Baker SK, Smith K, Atherton PJ, Phillips SM. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLoS One. 2014;9(2):e89431. doi: 10.1371/journal.pone.0089431. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

211. Cermak NM, Res PT, De Groot LC, Saris WH, Van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–1464. doi: 10.3945/ajcn.112.037556. [PubMed] [CrossRef] [Google Scholar]

212. Tipton KD, Gurkin BE, Matin S, Wolfe RR. Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers. J Nutr Biochem. 1999;10(2):89–95. doi: 10.1016/S0955-2863(98)00087-4. [PubMed] [CrossRef] [Google Scholar]

213. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr. 2003;78(2):250–258. doi: 10.1093/ajcn/78.2.250. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

214. Phillips SM. A brief review of critical processes in exercise-induced muscular hypertrophy. Sports Med. 2014;44(Suppl 1):S71–S77. doi: 10.1007/s40279-014-0152-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

215. Breen L, Phillips SM. Nutrient interaction for optimal protein anabolism in resistance exercise. Curr Opin Clin Nutr Metab Care. 2012;15(3):226–232. doi: 10.1097/MCO.0b013e3283516850. [PubMed] [CrossRef] [Google Scholar]

216. Katsanos CS, Chinkes DL, Paddon-Jones D, Zhang XJ, Aarsland A, Wolfe RR. Whey protein ingestion in elderly persons results in greater muscle protein accrual than ingestion of its constituent essential amino acid content. Nutr Res. 2008;28(10):651–658. doi: 10.1016/j.nutres.2008.06.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

217. Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 2005;19(3):422–424. doi: 10.1096/fj.04-2640fje. [PubMed] [CrossRef] [Google Scholar]

218. Blomstrand E, Eliasson J, Karlsson HK, Kohnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006;136(1 Suppl):269S–273S. doi: 10.1093/jn/136.1.269S. [PubMed] [CrossRef] [Google Scholar]

219. Nair KS, Short KR. Hormonal and signaling role of branched-chain amino acids. J Nutr. 2005;135(6 Suppl):1547S–1552S. doi: 10.1093/jn/135.6.1547S. [PubMed] [CrossRef] [Google Scholar]

220. Karlsson HK, Nilsson PA, Nilsson J, Chibalin AV, Zierath JR, Blomstrand E. Branched-chain amino acids increase p70s6k phosphorylation in human skeletal muscle after resistance exercise. Am J Physiol Endocrinol Metab. 2004;287(1):E1–E7. doi: 10.1152/ajpendo.00430.2003. [PubMed] [CrossRef] [Google Scholar]

221. Moberg M, Apro W, Ekblom B, Van Hall G, Holmberg HC, Blomstrand E. Activation of mtorc1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise. Am J Physiol Cell Physiol. 2016;310(11):C874–C884. doi: 10.1152/ajpcell.00374.2015. [PubMed] [CrossRef] [Google Scholar]

222. Jackman SR, Witard OC, Philp A, Wallis GA, Baar K, Tipton KD. Branched-chain amino acid ingestion stimulates muscle myofibrillar protein synthesis following resistance exercise in humans. Front Physiol. 2017;8:390. doi: 10.3389/fphys.2017.00390. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

223. Churchward-Venne TA, Burd NA, Mitchell CJ, West DW, Philp A, Marcotte GR, Baker SK, Baar K, Phillips SM. Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol. 2012;590(Pt 11):2751–2765. doi: 10.1113/jphysiol.2012.228833. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

224. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E, Rasmussen BB. Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mtor signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab. 2008;294(2):E392–E400. doi: 10.1152/ajpendo.00582.2007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

225. Drummond MJ, Rasmussen BB. Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care. 2008;11(3):222–226. doi: 10.1097/MCO.0b013e3282fa17fb. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

226. Stokes T, Hector AJ, Morton RW, Mcglory C, Phillips SM. Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients. 2018;10(2). [PMC free article] [PubMed]

227. Cribb PJ, Williams AD, Carey MF, Hayes A. The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int J Sport Nutr Exerc Metab. 2006;16(5):494–509. doi: 10.1123/ijsnem.16.5.494. [PubMed] [CrossRef] [Google Scholar]

228. Wilkinson SB, Tarnopolsky MA, Macdonald MJ, Macdonald JR, Armstrong D, Phillips SM. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr. 2007;85(4):1031–1040. doi: 10.1093/ajcn/85.4.1031. [PubMed] [CrossRef] [Google Scholar]

229. Fry AC, Schilling BK, Chui LZF, Weiss LW, Kreider R, Rasmussen CJ. Muscle fiber and performance adaptations to resistance exercise with myovive, colostrum or casein and whey supplementation. Res Sports Med. 2003;11:109–127. doi: 10.1080/0308351. [CrossRef] [Google Scholar]

230. Willoughby DS, Stout JR, Wilborn CD. Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids. 2007;32(4):467–477. doi: 10.1007/s00726-006-0398-7. [PubMed] [CrossRef] [Google Scholar]

231. Kerksick CM, Rasmussen C, Lancaster S, Starks M, Smith P, Melton C, Greenwood M, Almada A, Kreider R. Impact of differing protein sources and a creatine containing nutritional formula after 12 weeks of resistance training. Nutrition. 2007;23(9):647–656. doi: 10.1016/j.nut.2007.06.015. [PubMed] [CrossRef] [Google Scholar]

232. Kerksick CM, Rasmussen CJ, Lancaster SL, Magu B, Smith P, Melton C, Greenwood M, Almada AL, Earnest CP, Kreider RB. The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J Strength Cond Res. 2006;20(3):643–653. [PubMed] [Google Scholar]

233. Kalman D, Feldman S, Martinez M, Krieger DR, Tallon MJ. Effect of protein source and resistance training on body composition and sex hormones. J Int Soc Sports Nutr. 2007;4:4. doi: 10.1186/1550-2783-4-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

234. Paul GL. The rationale for consuming protein blends in sports nutrition. J Am Coll Nutr. 2009;28(Suppl):464S–472S. doi: 10.1080/07315724.2009.10718113. [PubMed] [CrossRef] [Google Scholar]

235. Tahavorgar A, Vafa M, Shidfar F, Gohari M, Heydari I. Whey protein preloads are more beneficial than soy protein preloads in regulating appetite, calorie intake, anthropometry, and body composition of overweight and obese men. Nutr Res. 2014;34(10):856–861. doi: 10.1016/j.nutres.2014.08.015. [PubMed] [CrossRef] [Google Scholar]

236. Garthe I, Raastad T, Refsnes PE, Koivisto A, Sundgot-Borgen J. Effect of two different weight-loss rates on body composition and strength and power-related performance in elite athletes. Int J Sport Nutr Exerc Metab. 2011;21(2):97–104. doi: 10.1123/ijsnem.21.2.97. [PubMed] [CrossRef] [Google Scholar]

237. Garthe I, Raastad T, Sundgot-Borgen J. Long-term effect of weight loss on body composition and performance in elite athletes. Int J Sport Nutr Exerc Metab. 2011;21(5):426–435. doi: 10.1123/ijsnem.21.5.426. [PubMed] [CrossRef] [Google Scholar]

238. Pasiakos SM, Cao JJ, Margolis LM, Sauter ER, Whigham LD, Mcclung JP, Rood JC, Carbone JW, Combs GF, Jr, Young AJ. Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial. FASEB J. 2013;27(9):3837–3847. doi: 10.1096/fj.13-230227. [PubMed] [CrossRef] [Google Scholar]

239. Longland TM, Oikawa SY, Mitchell CJ, Devries MC, Phillips SM. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. Am J Clin Nutr. 2016;103(3):738–746. doi: 10.3945/ajcn.115.119339. [PubMed] [CrossRef] [Google Scholar]

240. Rapaport E, Salikhova A, Abraham EH. Continuous intravenous infusion of atp in humans yields large expansions of erythrocyte atp pools but extracellular atp pools are elevated only at the start followed by rapid declines. Purinergic Signal. 2015;11(2):251–262. doi: 10.1007/s11302-015-9450-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

241. Arts IC, Coolen EJ, Bours MJ, Huyghebaert N, Stuart MA, Bast A, Dagnelie PC. Adenosine 5′-triphosphate (atp) supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans. J Int Soc Sports Nutr. 2012;9(1):16. doi: 10.1186/1550-2783-9-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

242. Purpura M, Rathmacher JA, Sharp MH, Lowery RP, Shields KA, Partl JM, Wilson JM, Jager R. Oral adenosine-5′-triphosphate (atp) administration increases postexercise atp levels, muscle excitability, and athletic performance following a repeated sprint bout. J Am Coll Nutr. 2017;36(3):177–183. doi: 10.1080/07315724.2016.1246989. [PubMed] [CrossRef] [Google Scholar]

243. Freitas MC, Cholewa JM, Gerosa-Neto J, Goncalves DC, Caperuto EC, Lira FS, Rossi FE. A single dose of oral atp supplementation improves performance and physiological response during lower body resistance exercise in recreational resistance trained males. J Strength Cond Res. 2017; 10.1519/JSC.0000000000002198. [PubMed]

244. Jager R, Roberts MD, Lowery RP, Joy JM, Cruthirds CL, Lockwood CM, Rathmacher JA, Purpura M, Wilson JM. Oral adenosine-5′-triphosphate (atp) administration increases blood flow following exercise in animals and humans. J Int Soc Sports Nutr. 2014;11:28. doi: 10.1186/1550-2783-11-28. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

245. Wilson JM, Joy JM, Lowery RP, Roberts MD, Lockwood CM, Manninen AH, Fuller JC, De Souza EO, Baier SM, Wilson SM, Rathmacher JA. Effects of oral adenosine-5′-triphosphate supplementation on athletic performance, skeletal muscle hypertrophy and recovery in resistance-trained men. Nutr Metab (Lond) 2013;10(1):57. doi: 10.1186/1743-7075-10-57. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

246. Long G, Zhang GQ. Effects of adenosine triphosphate (atp) on early recovery after total knee arthroplasty (tka): a randomized, double-blind, controlled study. J Arthroplast. 2014;29(12):2347–2351. doi: 10.1016/j.arth.2014.03.025. [PubMed] [CrossRef] [Google Scholar]

247. Kreider RB. Effects of protein and amino acid supplementation on athletic performance. Sportscience. 1999;3(1) Available: http://www.sportsci.org/jour/9901/rbk.html. Accessed 1 June 2018.

248. Coombes JS, Mcnaughton LR. Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. J Sports Med Phys Fitness. 2000;40(3):240–246. [PubMed] [Google Scholar]

249. Jackman SR, Witard OC, Jeukendrup AE, Tipton KD. Branched-chain amino acid ingestion can ameliorate soreness from eccentric exercise. Med Sci Sports Exerc. 2010;42(5):962–970. doi: 10.1249/MSS.0b013e3181c1b798. [PubMed] [CrossRef] [Google Scholar]

250. Howatson G, Hoad M, Goodall S, Tallent J, Bell PG, French DN. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sports Nutr. 2012;9:20. doi: 10.1186/1550-2783-9-20. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

251. Drummond MJ, Dreyer HC, Fry CS, Glynn EL, Rasmussen BB. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mtorc1 signaling. J Appl Physiol. 2009;106(4):1374–1384. doi: 10.1152/japplphysiol.91397.2008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

252. Phillips SM. The science of muscle hypertrophy: making dietary protein count. Proc Nutr Soc. 2011;70(1):100–103. doi: 10.1017/S002966511000399X. [PubMed] [CrossRef] [Google Scholar]

253. Devries MC, Phillips SM. Supplemental protein in support of muscle mass and health: advantage whey. J Food Sci. 2015;80(Suppl 1):A8–A15. doi: 10.1111/1750-3841.12802. [PubMed] [CrossRef] [Google Scholar]

254. Schena F, Guerrini F, Tregnaghi P, Kayser B. Branched-chain amino acid supplementation during trekking at high altitude. The effects on loss of body mass, body composition, and muscle power. Eur J Appl Physiol Occup Physiol. 1992;65(5):394–398. doi: 10.1007/BF00243503. [PubMed] [CrossRef] [Google Scholar]

255. Bigard AX, Lavier P, Ullmann L, Legrand H, Douce P, Guezennec CY. Branched-chain amino acid supplementation during repeated prolonged skiing exercises at altitude. Int J Sport Nutr. 1996;6(3):295–306. doi: 10.1123/ijsn.6.3.295. [PubMed] [CrossRef] [Google Scholar]

256. Candeloro N, Bertini I, Melchiorri G, De Lorenzo A. Effects of prolonged administration of branched-chain amino acids on body composition and physical fitness. Minerva Endocrinol. 1995;20(4):217–223. [PubMed] [Google Scholar]

257. Spillane M, Emerson C, Willoughby DS. The effects of 8 weeks of heavy resistance training and branched-chain amino acid supplementation on body composition and muscle performance. Nutr Health. 2012;21(4):263–273. doi: 10.1177/0260106013510999. [PubMed] [CrossRef] [Google Scholar]

258. Shad BJ, Smeuninx B, Atherton PJ, Breen L. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle. Appl Physiol Nutr Metab. 2015;40(12):1233–1241. doi: 10.1139/apnm-2015-0350. [PubMed] [CrossRef] [Google Scholar]

259. Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic acid-mediated mitogenic activation of mtor signaling. Science. 2001;294(5548):1942–1945. doi: 10.1126/science.1066015. [PubMed] [CrossRef] [Google Scholar]

260. Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S. The role of phospholipase d and phosphatidic acid in the mechanical activation of mtor signaling in skeletal muscle. Proc Natl Acad Sci U S A. 2006;103(12):4741–4746. doi: 10.1073/pnas.0600678103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

261. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, Mccormack WP, Scanlon TC, Purpura M, Jager R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. J Int Soc Sports Nutr. 2012;9(1):47. doi: 10.1186/1550-2783-9-47. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

262. Nakane Y, Yoshimura T. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates. Front Neurosci. 2014;8:115. doi: 10.3389/fnins.2014.00115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

263. Escalante G, Alencar M, Haddock B, Harvey P. The effects of phosphatidic acid supplementation on strength, body composition, muscular endurance, power, agility, and vertical jump in resistance trained men. J Int Soc Sports Nutr. 2016;13:24. doi: 10.1186/s12970-016-0135-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

264. Andre TL, Gann JJ, Mckinley-Barnard SK, Song JJ, Willoughby DS. Eight weeks of phosphatidic acid supplementation in conjunction with resistance training does not differentially affect body composition and muscle strength in resistance-trained men. J Sports Sci Med. 2016;15(3):532–539. [PMC free article] [PubMed] [Google Scholar]

265. Molderings GJ, Haenisch B. Agmatine (decarboxylated l-arginine): physiological role and therapeutic potential. Pharmacol Ther. 2012;133(3):351–365. doi: 10.1016/j.pharmthera.2011.12.005. [PubMed] [CrossRef] [Google Scholar]

266. Laube G, Bernstein HG. Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience? Biochem J. 2017;474(15):2619–2640. doi: 10.1042/BCJ20170007. [PubMed] [CrossRef] [Google Scholar]

267. Galgano F, Caruso M, Condelli N, Favati F. Focused review: Agmatine in fermented foods. Front Microbiol. 2012;3:199. doi: 10.3389/fmicb.2012.00199. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

268. Wernerman J, Hammarqvist F, Vinnars E. Alpha-ketoglutarate and postoperative muscle catabolism. Lancet. 1990;335(8691):701–703. doi: 10.1016/0140-6736(90)90811-I. [PubMed] [CrossRef] [Google Scholar]

269. Hammarqvist F, Wernerman J, Ali R, Vinnars E. Effects of an amino acid solution enriched with either branched chain amino acids or ornithine-alpha-ketoglutarate on the postoperative intracellular amino acid concentration of skeletal muscle. Br J Surg. 1990;77(2):214–218. doi: 10.1002/bjs.1800770227. [PubMed] [CrossRef] [Google Scholar]

270. Little JP, Forbes SC, Candow DG, Cornish SM, Chilibeck PD. Creatine, arginine alpha-ketoglutarate, amino acids, and medium-chain triglycerides and endurance and performance. Int J Sport Nutr Exerc Metab. 2008;18(5):493–508. doi: 10.1123/ijsnem.18.5.493. [PubMed] [CrossRef] [Google Scholar]

271. Campbell B, Roberts M, Kerksick C, Wilborn C, Marcello B, Taylor L, Nassar E, Leutholtz B, Bowden R, Rasmussen C, Greenwood M, Kreider R. Pharmacokinetics, safety, and effects on exercise performance of l-arginine alpha-ketoglutarate in trained adult men. Nutrition. 2006;22(9):872–881. doi: 10.1016/j.nut.2006.06.003. [PubMed] [CrossRef] [Google Scholar]

272. Willoughby DS, Boucher T, Reid J, Skelton G, Clark M. Effects of 7 days of arginine-alpha-ketoglutarate supplementation on blood flow, plasma l-arginine, nitric oxide metabolites, and asymmetric dimethyl arginine after resistance exercise. Int J Sport Nutr Exerc Metab. 2011;21(4):291–299. doi: 10.1123/ijsnem.21.4.291. [PubMed] [CrossRef] [Google Scholar]

273. Alvares TS, Meirelles CM, Bhambhani YN, Paschoalin VM, Gomes PS. L-arginine as a potential ergogenic aid in healthy subjects. Sports Med. 2011;41(3):233–248. doi: 10.2165/11538590-000000000-00000. [PubMed] [CrossRef] [Google Scholar]

274. Tang JE, Lysecki PJ, Manolakos JJ, Macdonald MJ, Tarnopolsky MA, Phillips SM. Bolus arginine supplementation affects neither muscle blood flow nor muscle protein synthesis in young men at rest or after resistance exercise. J Nutr. 2011;141(2):195–200. doi: 10.3945/jn.110.130138. [PubMed] [CrossRef] [Google Scholar]

275. Forbes SC, Harber V, Bell GJ. Oral l-arginine before resistance exercise blunts growth hormone in strength trained males. Int J Sport Nutr Exerc Metab. 2014;24(2):236–244. doi: 10.1123/ijsnem.2013-0106. [PubMed] [CrossRef] [Google Scholar]

276. West DW, Burd NA, Tang JE, Moore DR, Staples AW, Holwerda AM, Baker SK, Phillips SM. Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol. 2010;108(1):60–67. doi: 10.1152/japplphysiol.01147.2009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

277. West DW, Kujbida GW, Moore DR, Atherton P, Burd NA, Padzik JP, De Lisio M, Tang JE, Parise G, Rennie MJ, Baker SK, Phillips SM. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol. 2009;587(Pt 21):5239–5247. doi: 10.1113/jphysiol.2009.177220. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

278. Alvares TS, Conte CA, Paschoalin VM, Silva JT, Meirelles Cde M, Bhambhani YN, Gomes PS. Acute l-arginine supplementation increases muscle blood volume but not strength performance. Appl Physiol Nutr Metab. 2012;37(1):115–126. doi: 10.1139/h21-144. [PubMed] [CrossRef] [Google Scholar]

279. Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc. 2001;101(3):294–301. doi: 10.1016/S0002-8223(01)00078-5. [PubMed] [CrossRef] [Google Scholar]

280. Green NR, Ferrando AA. Plasma boron and the effects of boron supplementation in males. Environ Health Perspect. 1994;102(Suppl 7):73–77. doi: 10.1289/ehp.94102s773. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

281. Ferrando AA, Green NR. The effect of boron supplementation on lean body mass, plasma testosterone levels, and strength in male bodybuilders. Int J Sport Nutr. 1993;3(2):140–149. doi: 10.1123/ijsn.3.2.140. [PubMed] [CrossRef] [Google Scholar]

282. Meacham SL, Taper LJ, Volpe SL. Effect of boron supplementation on blood and urinary calcium, magnesium, and phosphorus, and urinary boron in athletic and sedentary women. Am J Clin Nutr. 1995;61(2):341–345. doi: 10.1093/ajcn/61.2.341. [PubMed] [CrossRef] [Google Scholar]

283. Meacham SL, Taper LJ, Volpe SL. Effects of boron supplementation on bone mineral density and dietary, blood, and urinary calcium, phosphorus, magnesium, and boron in female athletes. Environ Health Perspect. 1994;102(Suppl 7):79–82. doi: 10.1289/ehp.94102s779. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

284. Evans GW. The effect of chromium picolinate on insulin controlled parameters in humans. Int Biosc Med Res. 1989;11:163–180. [Google Scholar]

285. Hasten DL, Rome EP, Franks BD, Hegsted M. Effects of chromium picolinate on beginning weight training students. Int J Sport Nutr. 1992;2(4):343–350. doi: 10.1123/ijsn.2.4.343. [PubMed] [CrossRef] [Google Scholar]

286. Grant KE, Chandler RM, Castle AL, Ivy JL. Chromium and exercise training: effect on obese women. Med Sci Sports Exerc. 1997;29(8):992–998. doi: 10.1097/00005768-199708000-00003. [PubMed] [CrossRef] [Google Scholar]

287. Campbell WW, Joseph LJ, Anderson RA, Davey SL, Hinton J, Evans WJ. Effects of resistive training and chromium picolinate on body composition and skeletal muscle size in older women. Int J Sport Nutr Exerc Metab. 2002;12(2):125–135. doi: 10.1123/ijsnem.12.2.125. [PubMed] [CrossRef] [Google Scholar]

288. Campbell WW, Barton ML, Jr, Cyr-Campbell D, Davey SL, Beard JL, Parise G, Evans WJ. Effects of an omnivorous diet compared with a lactoovovegetarian diet on resistance-training-induced changes in body composition and skeletal muscle in older men. Am J Clin Nutr. 1999;70(6):1032–1039. doi: 10.1093/ajcn/70.6.1032. [PubMed] [CrossRef] [Google Scholar]

289. Walker LS, Bemben MG, Bemben DA, Knehans AW. Chromium picolinate effects on body composition and muscular performance in wrestlers. Med Sci Sports Exerc. 1998;30(12):1730–1737. doi: 10.1097/00005768-199812000-00012. [PubMed] [CrossRef] [Google Scholar]

290. Livolsi JM, Adams GM, Laguna PL. The effect of chromium picolinate on muscular strength and body composition in women athletes. J Strength Cond Res. 2001;15(2):161–166. [PubMed] [Google Scholar]

291. Volpe SL, Huang HW, Larpadisorn K. And lesser, ii. Effect of chromium supplementation and exercise on body composition, resting metabolic rate and selected biochemical parameters in moderately obese women following an exercise program. J Am Coll Nutr. 2001;20(4):293–306. doi: 10.1080/07315724.2001.10719050. [PubMed] [CrossRef] [Google Scholar]

292. Hallmark MA, Reynolds TH, Desouza CA, Dotson CO, Anderson RA, Rogers MA. Effects of chromium and resistive training on muscle strength and body composition. Med Sci Sports Exerc. 1996;28(1):139–144. doi: 10.1097/00005768-199601000-00025. [PubMed] [CrossRef] [Google Scholar]

293. Lukaski HC, Bolonchuk WW, Siders WA, Milne DB. Chromium supplementation and resistance training: effects on body composition, strength, and trace element status of men. Am J Clin Nutr. 1996;63(6):954–965. doi: 10.1093/ajcn/63.6.954. [PubMed] [CrossRef] [Google Scholar]

294. Clancy SP, Clarkson PM, Decheke ME, Nosaka K, Freedson PS, Cunningham JJ, Valentine B. Effects of chromium picolinate supplementation on body composition, strength, and urinary chromium loss in football players. Int J Sport Nutr. 1994;4(2):142–153. doi: 10.1123/ijsn.4.2.142. [PubMed] [CrossRef] [Google Scholar]

295. Volek JS, Silvestre R, Kirwan JP, Sharman MJ, Judelson DA, Spiering BA, Vingren JL, Maresh CM, Vanheest JL, Kraemer WJ. Effects of chromium supplementation on glycogen synthesis after high-intensity exercise. Med Sci Sports Exerc. 2006;38(12):2102–2109. doi: 10.1249/01.mss.0000235353.09061.54. [PubMed] [CrossRef] [Google Scholar]

296. Pariza MW, Park Y, Cook ME. Conjugated linoleic acid and the control of cancer and obesity. Toxicol Sci. 1999;52(2 Suppl):107–110. doi: 10.1093/toxsci/52.suppl_1.107. [PubMed] [CrossRef] [Google Scholar]

297. Pariza MW, Park Y, Cook ME. Mechanisms of action of conjugated linoleic acid: evidence and speculation. Proc Soc Exp Biol Med. 2000;223(1):8–13. doi: 10.1046/j.1525-1373.2000.22302.x. [PubMed] [CrossRef] [Google Scholar]

298. Pariza MW, Park Y, Cook ME. The biologically active isomers of conjugated linoleic acid. Prog Lipid Res. 2001;40(4):283–298. doi: 10.1016/S0163-7827(01)00008-X. [PubMed] [CrossRef] [Google Scholar]

299. Delany JP, Blohm F, Truett AA, Scimeca JA, West DB. Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. Am J Phys. 1999;276(4 Pt 2):R1172–R1179. [PubMed] [Google Scholar]

300. Delany JP, West DB. Changes in body composition with conjugated linoleic acid. J Am Coll Nutr. 2000;19(4):487S–493S. doi: 10.1080/07315724.2000.10718952. [PubMed] [CrossRef] [Google Scholar]

301. Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW. Effect of conjugated linoleic acid on body composition in mice. Lipids. 1997;32(8):853–858. doi: 10.1007/s11745-997-0109-x. [PubMed] [CrossRef] [Google Scholar]

302. Blankson H, Stakkestad JA, Fagertun H, Thom E, Wadstein J, Gudmundsen O. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr. 2000;130(12):2943–2948. doi: 10.1093/jn/130.12.2943. [PubMed] [CrossRef] [Google Scholar]

303. Gaullier JM, Halse J, Hoivik HO, Hoye K, Syvertsen C, Nurminiemi M, Hassfeld C, Einerhand A, O'shea M, Gudmundsen O. Six months supplementation with conjugated linoleic acid induces regional-specific fat mass decreases in overweight and obese. Br J Nutr. 2007;97(3):550–560. doi: 10.1017/S0007114507381324. [PubMed] [CrossRef] [Google Scholar]

304. Gaullier JM, Halse J, Hoye K, Kristiansen K, Fagertun H, Vik H, Gudmundsen O. Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans. Am J Clin Nutr. 2004;79(6):1118–1125. doi: 10.1093/ajcn/79.6.1118. [PubMed] [CrossRef] [Google Scholar]

305. Gaullier JM, Halse J, Hoye K, Kristiansen K, Fagertun H, Vik H, Gudmundsen O. Supplementation with conjugated linoleic acid for 24 months is well tolerated by and reduces body fat mass in healthy, overweight humans. J Nutr. 2005;135(4):778–784. doi: 10.1093/jn/135.4.778. [PubMed] [CrossRef] [Google Scholar]

306. Pinkoski C, Chilibeck PD, Candow DG, Esliger D, Ewaschuk JB, Facci M, Farthing JP, Zello GA. The effects of conjugated linoleic acid supplementation during resistance training. Med Sci Sports Exerc. 2006;38(2):339–348. doi: 10.1249/01.mss.0000183860.42853.15. [PubMed] [CrossRef] [Google Scholar]

307. Cornish SM, Candow DG, Jantz NT, Chilibeck PD, Little JP, Forbes S, Abeysekara S, Zello GA. Conjugated linoleic acid combined with creatine monohydrate and whey protein supplementation during strength training. Int J Sport Nutr Exerc Metab. 2009;19(1):79–96. doi: 10.1123/ijsnem.19.1.79. [PubMed] [CrossRef] [Google Scholar]

308. Tarnopolsky M, Zimmer A, Paikin J, Safdar A, Aboud A, Pearce E, Roy B, Doherty T. Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS One. 2007;2(10):e991. doi: 10.1371/journal.pone.0000991. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

309. Campbell B, Kreider RB. Conjugated linoleic acids. Curr Sports Med Rep. 2008;7(4):237–241. doi: 10.1249/JSR.0b013e31817f2aab. [PubMed] [CrossRef] [Google Scholar]

310. Willoughby DS, Leutholtz B. D-aspartic acid supplementation combined with 28 days of heavy resistance training has no effect on body composition, muscle strength, and serum hormones associated with the hypothalamo-pituitary-gonadal axis in resistance-trained men. Nutr Res. 2013;33(10):803–810. doi: 10.1016/j.nutres.2013.07.010. [PubMed] [CrossRef] [Google Scholar]

311. Melville GW, Siegler JC, Marshall PW. Three and six grams supplementation of d-aspartic acid in resistance trained men. J Int Soc Sports Nutr. 2015;12:15. doi: 10.1186/s12970-015-0078-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

312. Melville GW, Siegler JC, Marshall PWM. The effects of d-aspartic acid supplementation in resistance-trained men over a three month training period: a randomised controlled trial. PLoS One. 2017;12(8):e0182630. doi: 10.1371/journal.pone.0182630. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

313. Slama K, Koudela K, Tenora J, Mathova A. Insect hormones in vertebrates: anabolic effects of 20-hydroxyecdysone in japanese quail. Experientia. 1996;52(7):702–706. doi: 10.1007/BF01925578. [PubMed] [CrossRef] [Google Scholar]

314. Slama K, Kodkoua M. Insect hormones and bioanalogues: their effect on respiratory metabolism in dermestes vulpinus l. (coleoptera) Biol Bull. 1975;148(2):320–332. doi: 10.2307/1540550. [PubMed] [CrossRef] [Google Scholar]

315. Syrov VN. Mechanism of the anabolic action of phytoecdisteroids in mammals. Nauchnye Doki Vyss Shkoly Biol Nauki. 1984;11:16–20. [PubMed] [Google Scholar]

316. Kholodova Y. Phytoecdysteroids: biological effects, application in agriculture and complementary medicine (as presented at the 14-th ecdysone workshop, july, 2000, rapperswil, Switzerland) Ukr Biokhim Zh. 2001;73(3):21–29. [PubMed] [Google Scholar]

317. Bucci LR. Selected herbals and human exercise performance. Am J Clin Nutr. 2000;72(2 Suppl):624S–636S. doi: 10.1093/ajcn/72.2.624S. [PubMed] [CrossRef] [Google Scholar]

318. Wilborn CD, Taylor LW, Campbell BI, Kerksick C, Rasmussen CJ, Greenwood M, Kreider RB. Effects of methoxyisoflavone, ecdysterone, and sulfo-polysaccharide supplementation on training adaptations in resistance-trained males. J Int Soc Sports Nutr. 2006;3:19–27. doi: 10.1186/1550-2783-3-2-19. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

319. Rao A, Steels E, Inder WJ, Abraham S, Vitetta L. Testofen, a specialised trigonella foenum-graecum seed extract reduces age-related symptoms of androgen decrease, increases testosterone levels and improves sexual function in healthy aging males in a double-blind randomised clinical study. Aging Male. 2016;19(2):134–142. doi: 10.3109/13685538.2015.1135323. [PubMed] [CrossRef] [Google Scholar]

320. Wankhede S, Mohan VG, Thakrdesai P. Beneficial effects of fenugreek glycoside supplementation in male subjects during resistance training: a randomized controlled pilot study. J Sport Health Sci. 2016;5(2):176–182. doi: 10.1016/j.jshs.2014.09.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

321. Poole C, Bushey B, Foster C, Campbell B, Willoughby D, Kreider R, Taylor L, Wilborn C. The effects of a commercially available botanical supplement on strength, body composition, power output, and hormonal profiles in resistance-trained males. J Int Soc Sports Nutr. 2010;7:34. doi: 10.1186/1550-2783-7-34. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

322. Wheeler KB, Garleb KA. Gamma oryzanol-plant sterol supplementation: metabolic, endocrine, and physiologic effects. Int J Sport Nutr. 1991;1(2):170–177. doi: 10.1123/ijsn.1.2.170. [PubMed] [CrossRef] [Google Scholar]

323. Manore M, Meeusen R, Roelands B, Moran S, Popple AD, Naylor MJ, Burke LM, Stear SJ, Castell LM. Bjsm reviews: A-z of nutritional supplements: dietary supplements, sports nutrition foods and ergogenic aids for health and performance--part 16. Br J Sports Med. 2011;45(1):73–74. doi: 10.1136/bjsm.2010.081505. [PubMed] [CrossRef] [Google Scholar]

324. Fry AC, Bonner E, Lewis DL, Johnson RL, Stone MH, Kraemer WJ. The effects of gamma-oryzanol supplementation during resistance exercise training. Int J Sport Nutr. 1997;7(4):318–329. doi: 10.1123/ijsn.7.4.318. [PubMed] [CrossRef] [Google Scholar]

325. Eslami S, Esa NM, Marandi SM, Ghasemi G, Eslami S. Effects of gamma oryzanol supplementation on anthropometric measurements & muscular strength in healthy males following chronic resistance training. Indian J Med Res. 2014;139(6):857–863. [PMC free article] [PubMed] [Google Scholar]

326. Garlick PJ. The role of leucine in the regulation of protein metabolism. J Nutr. 2005;135(6 Suppl):1553S–1556S. doi: 10.1093/jn/135.6.1553S. [PubMed] [CrossRef] [Google Scholar]

327. Garlick PJ, Grant I. Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. Biochem J. 1988;254(2):579–584. doi: 10.1042/bj2540579. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

328. Low SY, Taylor PM, Rennie MJ. Responses of glutamine transport in cultured rat skeletal muscle to osmotically induced changes in cell volume. J Physiol. 1996;492(Pt 3):877–885. doi: 10.1113/jphysiol.1996.sp021353. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

329. Rennie MJ, Ahmed A, Khogali SE, Low SY, Hundal HS, Taylor PM. Glutamine metabolism and transport in skeletal muscle and heart and their clinical relevance. J Nutr. 1996;126(4 Suppl):1142S–1149S. doi: 10.1093/jn/126.suppl_4.1142S. [PubMed] [CrossRef] [Google Scholar]

330. Rennie MJ, Khogali SE, Low SY, Mcdowell HE, Hundal HS, Ahmed A, Taylor PM. Amino acid transport in heart and skeletal muscle and the functional consequences. Biochem Soc Trans. 1996;24(3):869–873. doi: 10.1042/bst0240869. [PubMed] [CrossRef] [Google Scholar]

331. Varnier M, Leese GP, Thompson J, Rennie MJ. Stimulatory effect of glutamine on glycogen accumulation in human skeletal muscle. Am J Phys. 1995;269(2 Pt 1):E309–E315. [PubMed] [Google Scholar]

332. Gleeson M. Dosing and efficacy of glutamine supplementation in human exercise and sport training. J Nutr. 2008;138(10):2045S–2049S. doi: 10.1093/jn/138.10.2045S. [PubMed] [CrossRef] [Google Scholar]

333. Colker CM. Effects of supplemental protein on body composition and muscular strength in healthy athletic male adults. Curr Ther Res. 2000;61(1):19–28. doi: 10.1016/S0011-393X(00)88492-1. [CrossRef] [Google Scholar]

334. Antonio J, Sanders MS, Kalman D, Woodgate D, Street C. The effects of high-dose glutamine ingestion on weightlifting performance. J Strength Cond Res. 2002;16(1):157–160. [PubMed] [Google Scholar]

335. Candow DG, Chilibeck PD, Burke DG, Davison KS, Smith-Palmer T. Effect of glutamine supplementation combined with resistance training in young adults. Eur J Appl Physiol. 2001;86(2):142–149. doi: 10.1007/s00421-001-0523-y. [PubMed] [CrossRef] [Google Scholar]

336. Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Verne GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 2012;24(6):503–512. doi: 10.1111/j.1365-2982.2012.01921.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

337. Legault Z, Bagnall N, Kimmerly DS. The influence of oral l-glutamine supplementation on muscle strength recovery and soreness following unilateral knee extension eccentric exercise. Int J Sport Nutr Exerc Metab. 2015;25(5):417–426. doi: 10.1123/ijsnem.2014-0209. [PubMed] [CrossRef] [Google Scholar]

338. Bowers CY. Growth hormone-releasing peptide (ghrp) Cell Mol Life Sci. 1998;54(12):1316–1329. doi: 10.1007/s000180050257. [PubMed] [CrossRef] [Google Scholar]

339. Camanni F, Ghigo E, Arvat E. Growth hormone-releasing peptides and their analogs. Front Neuroendocrinol. 1998;19(1):47–72. doi: 10.1006/frne.1997.0158. [PubMed] [CrossRef] [Google Scholar]

340. Ghigo E, Arvat E, Giordano R, Broglio F, Gianotti L, Maccario M, Bisi G, Graziani A, Papotti M, Muccioli G, Deghenghi R, Camanni F. Biologic activities of growth hormone secretagogues in humans. Endocrine. 2001;14(1):87–93. doi: 10.1385/ENDO:14:1:087. [PubMed] [CrossRef] [Google Scholar]

341. Sigalos JT, Pastuszak AW. The safety and efficacy of growth hormone secretagogues. Sex Med Rev. 2018;6(1):45–53. doi: 10.1016/j.sxmr.2017.02.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

342. Pinyot A, Nikolovski Z, Bosch J, Such-Sanmartin G, Kageyama S, Segura J, Gutierrez-Gallego R. Growth hormone secretagogues: out of competition. Anal Bioanal Chem. 2012;402(3):1101–1108. doi: 10.1007/s00216-011-5544-8. [PubMed] [CrossRef] [Google Scholar]

343. Zachwieja JJ, Yarasheski KE. Does growth hormone therapy in conjunction with resistance exercise increase muscle force production and muscle mass in men and women aged 60 years or older? Phys Ther. 1999;79(1):76–82. [PubMed] [Google Scholar]

344. Chromiak JA, Antonio J. Use of amino acids as growth hormone-releasing agents by athletes. Nutrition. 2002;18(7–8):657–661. doi: 10.1016/S0899-9007(02)00807-9. [PubMed] [CrossRef] [Google Scholar]

345. Messina M. Soyfoods and soybean phyto-oestrogens (isoflavones) as possible alternatives to hormone replacement therapy (hrt) Eur J Cancer. 2000;36(Suppl 4):S71–S72. doi: 10.1016/S0959-8049(00)00233-1. [PubMed] [CrossRef] [Google Scholar]

346. Messina M, Messina V. Soyfoods, soybean isoflavones, and bone health: a brief overview. J Ren Nutr. 2000;10(2):63–68. doi: 10.1016/S1051-2276(00)90001-3. [PubMed] [CrossRef] [Google Scholar]

347. De Aloysio D, Gambacciani M, Altieri P, Ciaponi M, Ventura V, Mura M, Genazzani AR, Bottiglioni F. Bone density changes in postmenopausal women with the administration of ipriflavone alone or in association with low-dose ert. Gynecol Endocrinol. 1997;11(4):289–293. doi: 10.3109/09513599709152548. [PubMed] [CrossRef] [Google Scholar]

348. Choquette S, Riesco E, Cormier E, Dion T, Aubertin-Leheudre M, Dionne IJ. Effects of soya isoflavones and exercise on body composition and clinical risk factors of cardiovascular diseases in overweight postmenopausal women: a 6-month double-blind controlled trial. Br J Nutr. 2011;105(8):1199–1209. doi: 10.1017/S0007114510004897. [PubMed] [CrossRef] [Google Scholar]

349. Wu J, Oka J, Tabata I, Higuchi M, Toda T, Fuku N, Ezaki J, Sugiyama F, Uchiyama S, Yamada K, Ishimi Y. Effects of isoflavone and exercise on bmd and fat mass in postmenopausal japanese women: a 1-year randomized placebo-controlled trial. J Bone Miner Res. 2006;21(5):780–789. doi: 10.1359/jbmr.060208. [PubMed] [CrossRef] [Google Scholar]

350. Aubertin-Leheudre M, Lord C, Khalil A, Dionne IJ. Effect of 6 months of exercise and isoflavone supplementation on clinical cardiovascular risk factors in obese postmenopausal women: a randomized, double-blind study. Menopause. 2007;14(4):624–629. doi: 10.1097/gme.0b013e31802e426b. [PubMed] [CrossRef] [Google Scholar]

351. Lebon J, Riesco E, Tessier D, Dionne IJ. Additive effects of isoflavones and exercise training on inflammatory cytokines and body composition in overweight and obese postmenopausal women: a randomized controlled trial. Menopause. 2014;21(8):869–875. doi: 10.1097/GME.0000000000000177. [PubMed] [CrossRef] [Google Scholar]

352. Coudray-Lucas C, Le Bever H, Cynober L, De Bandt JP, Carsin H. Ornithine alpha-ketoglutarate improves wound healing in severe burn patients: a prospective randomized double-blind trial versus isonitrogenous controls. Crit Care Med. 2000;28(6):1772–1776. doi: 10.1097/00003246-200006000-00012. [PubMed] [CrossRef] [Google Scholar]

353. Donati L, Ziegler F, Pongelli G, Signorini MS. Nutritional and clinical efficacy of ornithine alpha-ketoglutarate in severe burn patients. Clin Nutr. 1999;18(5):307–311. doi: 10.1016/S0261-5614(98)80029-0. [PubMed] [CrossRef] [Google Scholar]

354. Chetlin RD, Yeater RA, Ullrich IH, Hornsby WG, Malanga CJ, Byrner RW. The effect of ornithine alpha-ketoglutarate (okg) on healthy, weight trained men. J Exerc Physiol Online. 2000;3(4).

355. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Mac RP, Lee M, Yarasheski KE, Sinha-Hikim I, Dzekov C, Dzekov J, Magliano L, Storer TW. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab. 2005;90(2):678–688. doi: 10.1210/jc.2004-1184. [PubMed] [CrossRef] [Google Scholar]

356. Kuhn CM. Anabolic steroids. Recent Prog Horm Res. 2002;57:411–434. doi: 10.1210/rp.57.1.411. [PubMed] [CrossRef] [Google Scholar]

357. Limbird TJ. Anabolic steroids in the training and treatment of athletes. Compr Ther. 1985;11(1):25–30. [PubMed] [Google Scholar]

358. Lukas SE. Current perspectives on anabolic-androgenic steroid abuse. Trends Pharmacol Sci. 1993;14(2):61–68. doi: 10.1016/0165-6147(93)90032-F. [PubMed] [CrossRef] [Google Scholar]

359. Sattler FR, Castaneda-Sceppa C, Binder EF, Schroeder ET, Wang Y, Bhasin S, Kawakubo M, Stewart Y, Yarasheski KE, Ulloor J, Colletti P, Roubenoff R, Azen SP. Testosterone and growth hormone improve body composition and muscle performance in older men. J Clin Endocrinol Metab. 2009;94(6):1991–2001. doi: 10.1210/jc.2008-2338. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

360. Storer TW, Woodhouse L, Magliano L, Singh AB, Dzekov C, Dzekov J, Bhasin S. Changes in muscle mass, muscle strength, and power but not physical function are related to testosterone dose in healthy older men. J Am Geriatr Soc. 2008;56(11):1991–1999. doi: 10.1111/j.1532-5415.2008.01927.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

361. Wagner JC. Enhancement of athletic performance with drugs. An overview. Sports Med. 1991;12(4):250–265. doi: 10.2165/00007256-199112040-00004. [PubMed] [CrossRef] [Google Scholar]

362. Yarasheski KE. Growth hormone effects on metabolism, body composition, muscle mass, and strength. Exerc Sport Sci Rev. 1994;22:285–312. doi: 10.1249/00003677-199401000-00013. [PubMed] [CrossRef] [Google Scholar]

363. Smart T. Other therapies for wasting. GMHC Treat Issues. 1995;9(5):7–8. [PubMed] [Google Scholar]

364. Casaburi R. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Med Sci Sports Exerc. 2001;33(7 Suppl):S662–S670. doi: 10.1097/00005768-200107001-00004. [PubMed] [CrossRef] [Google Scholar]

365. Hayes VY, Urban RJ, Jiang J, Marcell TJ, Helgeson K, Mauras N. Recombinant human growth hormone and recombinant human insulin-like growth factor i diminish the catabolic effects of hypogonadism in man: metabolic and molecular effects. J Clin Endocrinol Metab. 2001;86(5):2211–2219. [PubMed] [Google Scholar]

366. Newshan G, Leon W. The use of anabolic agents in hiv disease. Int J STD AIDS. 2001;12(3):141–144. doi: 10.1258/0956462011916893. [PubMed] [CrossRef] [Google Scholar]

367. Tenover JS. Androgen replacement therapy to reverse and/or prevent age-associated sarcopenia in men. Bailliere Clin Endocrinol Metab. 1998;12(3):419–425. doi: 10.1016/S0950-351X(98)80153-5. [PubMed] [CrossRef] [Google Scholar]

368. Bross R, Casaburi R, Storer TW, Bhasin S. Androgen effects on body composition and muscle function: implications for the use of androgens as anabolic agents in sarcopenic states. Bailliere Clin Endocrinol Metab. 1998;12(3):365–378. doi: 10.1016/S0950-351X(98)80077-3. [PubMed] [CrossRef] [Google Scholar]

369. Casaburi R. Rationale for anabolic therapy to facilitate rehabilitation in chronic obstructive pulmonary disease. Bailliere Clin Endocrinol Metab. 1998;12(3):407–418. doi: 10.1016/S0950-351X(98)80134-1. [PubMed] [CrossRef] [Google Scholar]

370. Johansen KL, Mulligan K, Schambelan M. Anabolic effects of nandrolone decanoate in patients receiving dialysis: a randomized controlled trial. Jama. 1999;281(14):1275–1281. doi: 10.1001/jama.281.14.1275. [PubMed] [CrossRef] [Google Scholar]

371. Sattler FR, Jaque SV, Schroeder ET, Olson C, Dube MP, Martinez C, Briggs W, Horton R, Azen S. Effects of pharmacological doses of nandrolone decanoate and progressive resistance training in immunodeficient patients infected with human immunodeficiency virus. J Clin Endocrinol Metab. 1999;84(4):1268–1276. [PubMed] [Google Scholar]

372. Beiner JM, Jokl P, Cholewicki J, Panjabi MM. The effect of anabolic steroids and corticosteroids on healing of muscle contusion injury. Am J Sports Med. 1999;27(1):2–9. doi: 10.1177/03635465990270011101. [PubMed] [CrossRef] [Google Scholar]

373. Ferreira IM, Verreschi IT, Nery LE, Goldstein RS, Zamel N, Brooks D, Jardim JR. The influence of 6 months of oral anabolic steroids on body mass and respiratory muscles in undernourished copd patients. Chest. 1998;114(1):19–28. doi: 10.1378/chest.114.1.19. [PubMed] [CrossRef] [Google Scholar]

374. Bhasin S, Bremner WJ. Clinical review 85: emerging issues in androgen replacement therapy. J Clin Endocrinol Metab. 1997;82(1):3–8. [PubMed] [Google Scholar]

375. Hoffman JR, Kraemer WJ, Bhasin S, Storer T, Ratamess NA, Haff GG, Willoughby DS, Rogol AD. Position stand on androgen and human growth hormone use. J Strength Cond Res. 2009;23(5 Suppl):S1–S59. doi: 10.1519/JSC.0b013e31819df2e6. [PubMed] [CrossRef] [Google Scholar]

376. Ferrando AA, Sheffield-Moore M, Paddon-Jones D, Wolfe RR, Urban RJ. Differential anabolic effects of testosterone and amino acid feeding in older men. J Clin Endocrinol Metab. 2003;88(1):358–362. doi: 10.1210/jc.2002-021041. [PubMed] [CrossRef] [Google Scholar]

377. Meeuwsen IB, Samson MM, Duursma SA, Verhaar HJ. Muscle strength and tibolone: a randomised, double-blind, placebo-controlled trial. BJOG. 2002;109(1):77–84. doi: 10.1111/j.1471-0528.2002.01213.x. [PubMed] [CrossRef] [Google Scholar]

378. King DS, Sharp RL, Vukovich MD, Brown GA, Reifenrath TA, Uhl NL, Parsons KA. Effect of oral androstenedione on serum testosterone and adaptations to resistance training in young men: a randomized controlled trial. JAMA. 1999;281(21):2020–2028. doi: 10.1001/jama.281.21.2020. [PubMed] [CrossRef] [Google Scholar]

379. Carter WJ. Effect of anabolic hormones and insulin-like growth factor-i on muscle mass and strength in elderly persons. Clin Geriatr Med. 1995;11(4):735–748. doi: 10.1016/S0749-0690(18)30268-4. [PubMed] [CrossRef] [Google Scholar]

380. Soe M, Jensen KL, Gluud C. The effect of anabolic androgenic steroids on muscle strength, body weight and lean body mass in body-building men. Ugeskr Laeger. 1989;151(10):610–613. [PubMed] [Google Scholar]

381. Griggs RC, Pandya S, Florence JM, Brooke MH, Kingston W, Miller JP, Chutkow J, Herr BE, Moxley RT., 3rd Randomized controlled trial of testosterone in myotonic dystrophy. Neurology. 1989;39(2 Pt 1):219–222. doi: 10.1212/WNL.39.2.219. [PubMed] [CrossRef] [Google Scholar]

382. Crist DM, Stackpole PJ, Peake GT. Effects of androgenic-anabolic steroids on neuromuscular power and body composition. J Appl Physiol. 1983;54(2):366–370. doi: 10.1152/jappl.1983.54.2.366. [PubMed] [CrossRef] [Google Scholar]

383. Ward P. The effect of an anabolic steroid on strength and lean body mass. Med Sci Sports. 1973;5(4):277–282. [PubMed] [Google Scholar]

384. Varriale P, Mirzai-Tehrane M, Sedighi A. Acute myocardial infarction associated with anabolic steroids in a young hiv-infected patient. Pharmacotherapy. 1999;19(7):881–884. doi: 10.1592/phco.19.10.881.31552. [PubMed] [CrossRef] [Google Scholar]

385. Kibble MW, Ross MB. Adverse effects of anabolic steroids in athletes. Clin Pharm. 1987;6(9):686–692. [PubMed] [Google Scholar]

386. Gruber AJ, Pope HG., Jr Psychiatric and medical effects of anabolic-androgenic steroid use in women. Psychother Psychosom. 2000;69(1):19–26. doi: 10.1159/000012362. [PubMed] [CrossRef] [Google Scholar]

387. Lamb DR. Anabolic steroids in athletics: how well do they work and how dangerous are they? Am J Sports Med. 1984;12(1):31–38. doi: 10.1177/036354658401200105. [PubMed] [CrossRef] [Google Scholar]

388. Salke RC, Rowland TW, Burke EJ. Left ventricular size and function in body builders using anabolic steroids. Med Sci Sports Exerc. 1985;17(6):701–704. doi: 10.1249/00005768-198512000-00014. [PubMed] [CrossRef] [Google Scholar]

389. Brown GA, Martini ER, Roberts BS, Vukovich MD, King DS. Acute hormonal response to sublingual androstenediol intake in young men. J Appl Physiol. 2002;92(1):142–146. doi: 10.1152/jappl.2002.92.1.142. [PubMed] [CrossRef] [Google Scholar]

390. Brown GA, Mckenzie D. Acute resistance exercise does not change the hormonal response to sublingual androstenediol intake. Eur J Appl Physiol. 2006;97(4):404–412. doi: 10.1007/s00421-006-0194-9. [PubMed] [CrossRef] [Google Scholar]

391. Broeder CE, Quindry J, Brittingham K, Panton L, Thomson J, Appakondu S, Breuel K, Byrd R, Douglas J, Earnest C, Mitchell C, Olson M, Roy T, Yarlagadda C. The andro project: physiological and hormonal influences of androstenedione supplementation in men 35 to 65 years old participating in a high-intensity resistance training program. Arch Intern Med. 2000;160(20):3093–3104. doi: 10.1001/archinte.160.20.3093. [PubMed] [CrossRef] [Google Scholar]

392. Ballantyne CS, Phillips SM, Macdonald JR, Tarnopolsky MA, Macdougall JD. The acute effects of androstenedione supplementation in healthy young males. Can J Appl Physiol. 2000;25(1):68–78. doi: 10.1139/h00-005. [PubMed] [CrossRef] [Google Scholar]

393. Brown GA, Vukovich MD, Sharp RL, Reifenrath TA, Parsons KA, King DS. Effect of oral dhea on serum testosterone and adaptations to resistance training in young men. J Appl Physiol. 1999;87(6):2274–2283. doi: 10.1152/jappl.1999.87.6.2274. [PubMed] [CrossRef] [Google Scholar]

394. Van Gammeren D, Falk D, Antonio J. Effects of norandrostenedione and norandrostenediol in resistance-trained men. Nutrition. 2002;18(9):734–737. doi: 10.1016/S0899-9007(02)00834-1. [PubMed] [CrossRef] [Google Scholar]

395. Van Gammeren D, Falk D, Antonio J. The effects of supplementation with 19-nor-4-androstene-3,17-dione and 19-nor-4-androstene-3,17-diol on body composition and athletic performance in previously weight-trained male athletes. Eur J Appl Physiol. 2001;84(5):426–431. doi: 10.1007/s004210100395. [PubMed] [CrossRef] [Google Scholar]

396. Pipe A. Effects of testosterone precursor supplementation on intensive weight training. Clin J Sport Med. 2001;11(2):126. doi: 10.1097/00042752-200104000-00014. [PubMed] [CrossRef] [Google Scholar]

397. Mauras N, Lima J, Patel D, Rini A, Di Salle E, Kwok A, Lippe B. Pharmacokinetics and dose finding of a potent aromatase inhibitor, aromasin (exemestane), in young males. J Clin Endocrinol Metab. 2003;88(12):5951–5956. doi: 10.1210/jc.2003-031279. [PubMed] [CrossRef] [Google Scholar]

398. Rohle D, Wilborn C, Taylor L, Mulligan C, Kreider R, Willoughby D. Effects of eight weeks of an alleged aromatase inhibiting nutritional supplement 6-oxo (androst-4-ene-3,6,17-trione) on serum hormone profiles and clinical safety markers in resistance-trained, eugonadal males. J Int Soc Sports Nutr. 2007;4:13. doi: 10.1186/1550-2783-4-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

399. Willoughby DS, Wilborn C, Taylor L, Campbell W. Eight weeks of aromatase inhibition using the nutritional supplement novedex xt: effects in young, eugonadal men. Int J Sport Nutr Exerc Metab. 2007;17(1):92–108. doi: 10.1123/ijsnem.17.1.92. [PubMed] [CrossRef] [Google Scholar]

400. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, Shen R, Lalani R, Asa S, Mamita M, Nair G, Arver S, Bhasin S. Organization of the human myostatin gene and expression in healthy men and hiv-infected men with muscle wasting. Proc Natl Acad Sci U S A. 1998;95(25):14938–14943. doi: 10.1073/pnas.95.25.14938. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

401. Ivey FM, Roth SM, Ferrell RE, Tracy BL, Lemmer JT, Hurlbut DE, Martel GF, Siegel EL, Fozard JL, Jeffrey Metter E, Fleg JL, Hurley BF. Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training. J Gerontol A Biol Sci Med Sci. 2000;55(11):M641–M648. doi: 10.1093/gerona/55.11.M641. [PubMed] [CrossRef] [Google Scholar]

402. Willoughby DS. Effects of an alleged myostatin-binding supplement and heavy resistance training on serum myostatin, muscle strength and mass, and body composition. Int J Sport Nutr Exerc Metab. 2004;14(4):461–472. doi: 10.1123/ijsnem.14.4.461. [PubMed] [CrossRef] [Google Scholar]

403. Antonio J, Stout JR. Sport supplements. Philadelphia: Lippincott, Williams and Wilkins; 2001. [Google Scholar]

404. Antonio J, Uelmen J, Rodriguez R, Earnest C. The effects of tribulus terrestris on body composition and exercise performance in resistance-trained males. Int J Sport Nutr Exerc Metab. 2000;10(2):208–215. doi: 10.1123/ijsnem.10.2.208. [PubMed] [CrossRef] [Google Scholar]

405. Rogerson S, Riches CJ, Jennings C, Weatherby RP, Meir RA, Marshall-Gradisnik SM. The effect of five weeks of tribulus terrestris supplementation on muscle strength and body composition during preseason training in elite rugby league players. J Strength Cond Res. 2007;21(2):348–353. [PubMed] [Google Scholar]

406. Brown GA, Vukovich MD, Reifenrath TA, Uhl NL, Parsons KA, Sharp RL, King DS. Effects of anabolic precursors on serum testosterone concentrations and adaptations to resistance training in young men. Int J Sport Nutr Exerc Metab. 2000;10(3):340–359. doi: 10.1123/ijsnem.10.3.340. [PubMed] [CrossRef] [Google Scholar]

407. Brown GA, Vukovich MD, Martini ER, Kohut ML, Franke WD, Jackson DA, King DS. Effects of androstenedione-herbal supplementation on serum sex hormone concentrations in 30- to 59-year-old men. Int J Vitam Nutr Res. 2001;71(5):293–301. doi: 10.1024/0300-9831.71.5.293. [PubMed] [CrossRef] [Google Scholar]

408. Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1995;95(6):2501–2509. doi: 10.1172/JCI117951. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

409. Jentjens RL, Jeukendrup AE. Effect of acute and short-term administration of vanadyl sulphate on insulin sensitivity in healthy active humans. Int J Sport Nutr Exerc Metab. 2002;12(4):470–479. doi: 10.1123/ijsnem.12.4.470. [PubMed] [CrossRef] [Google Scholar]

410. Sakurai H. A new concept: the use of vanadium complexes in the treatment of diabetes mellitus. Chem Rec. 2002;2(4):237–248. doi: 10.1002/tcr.10029. [PubMed] [CrossRef] [Google Scholar]

411. Clarkson PM, Rawson ES. Nutritional supplements to increase muscle mass. Crit Rev Food Sci Nutr. 1999;39(4):317–328. doi: 10.1080/10408699991279196. [PubMed] [CrossRef] [Google Scholar]

412. Fawcett JP, Farquhar SJ, Walker RJ, Thou T, Lowe G, Goulding A. The effect of oral vanadyl sulfate on body composition and performance in weight-training athletes. Int J Sport Nutr. 1996;6(4):382–390. doi: 10.1123/ijsn.6.4.382. [PubMed] [CrossRef] [Google Scholar]

413. Fawcett JP, Farquhar SJ, Thou T, Shand BI. Oral vanadyl sulphate does not affect blood cells, viscosity or biochemistry in humans. Pharmacol Toxicol. 1997;80(4):202–206. doi: 10.1111/j.1600-0773.1997.tb00397.x. [PubMed] [CrossRef] [Google Scholar]

414. Brilla L, Conte V. Effects of a novel zinc-magnesium formulation on hormones and strength. J Exerc Physiol Online. 2000;3:26–36. [Google Scholar]

415. Koehler K, Parr MK, Geyer H, Mester J, Schanzer W. Serum testosterone and urinary excretion of steroid hormone metabolites after administration of a high-dose zinc supplement. Eur J Clin Nutr. 2009;63(1):65–70. doi: 10.1038/sj.ejcn.1602899. [PubMed] [CrossRef] [Google Scholar]

416. Wilborn CD, Kerksick CM, Campbell BI, Taylor LW, Marcello BM, Rasmussen CJ, Greenwood MC, Almada A, Kreider RB. Effects of zinc magnesium aspartate (zma) supplementation on training adaptations and markers of anabolism and catabolism. J Int Soc Sports Nutr. 2004;1(2):12–20. doi: 10.1186/1550-2783-1-2-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

417. Om AS, Chung KW. Dietary zinc deficiency alters 5 alpha-reduction and aromatization of testosterone and androgen and estrogen receptors in rat liver. J Nutr. 1996;126(4):842–848. doi: 10.1093/jn/126.4.842. [PubMed] [CrossRef] [Google Scholar]

418. Harris R, Dunnett M, Greenhaf P. Carnosine and taurine contents in individual fibres of human vastus lateralis muscle. J Sport Sci. 1998;16:639–643. doi: 10.1080/026404198366443. [CrossRef] [Google Scholar]

419. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30(3):279–289. doi: 10.1007/s00726-006-0299-9. [PubMed] [CrossRef] [Google Scholar]

420. Church DD, Hoffman JR, Varanoske AN, Wang R, Baker KM, La Monica MB, Beyer KS, Dodd SJ, Oliveira LP, Harris RC, Fukuda DH, Stout JR. Comparison of two beta-alanine dosing protocols on muscle carnosine elevations. J Am Coll Nutr. 2017;36(8):608–616. doi: 10.1080/07315724.2017.1335250. [PubMed] [CrossRef] [Google Scholar]

421. Hoffman JR, Ratamess NA, Faigenbaum AD, Ross R, Kang J, Stout JR, Wise JA. Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutr Res. 2008;28(1):31–35. doi: 10.1016/j.nutres.2007.11.004. [PubMed] [CrossRef] [Google Scholar]

422. Smith AE, Walter AA, Graef JL, Kendall KL, Moon JR, Lockwood CM, Fakuda DH, Beck TW, Cramer JT, Stout JR. Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J Int Soc Sports Nutr. 2009;6(1):5. doi: 10.1186/1550-2783-6-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

423. Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E. Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. 2007;103(5):1736–1743. doi: 10.1152/japplphysiol.00397.2007. [PubMed] [CrossRef] [Google Scholar]

424. Hoffman J, Ratamess N, Kang J, Mangine G, Faigenbaum A, Stout J. Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. Int J Sport Nutr Exerc Metab. 2006;16(4):430–446. doi: 10.1123/ijsnem.16.4.430. [PubMed] [CrossRef] [Google Scholar]

425. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT, Smith M, Wise JA. The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids. 2008;34(4):547–554. doi: 10.1007/s00726-007-0008-3. [PubMed] [CrossRef] [Google Scholar]

426. Smith AE, Moon JR, Kendall KL, Graef JL, Lockwood CM, Walter AA, Beck TW, Cramer JT, Stout JR. The effects of beta-alanine supplementation and high-intensity interval training on neuromuscular fatigue and muscle function. Eur J Appl Physiol. 2009;105(3):357–363. doi: 10.1007/s00421-008-0911-7. [PubMed] [CrossRef] [Google Scholar]

427. Wiles JD, Coleman D, Tegerdine M, Swaine IL. The effects of caffeine ingestion on performance time, speed and power during a laboratory-based 1 km cycling time-trial. J Sports Sci. 2006;24(11):1165–1171. doi: 10.1080/02640410500457687. [PubMed] [CrossRef] [Google Scholar]

428. Ivy JL, Kammer L, Ding Z, Wang B, Bernard JR, Liao YH, Hwang J. Improved cycling time-trial performance after ingestion of a caffeine energy drink. Int J Sport Nutr Exerc Metab. 2009;19(1):61–78. doi: 10.1123/ijsnem.19.1.61. [PubMed] [CrossRef] [Google Scholar]

429. Mcnaughton LR, Lovell RJ, Siegler J, Midgley AW, Moore L, Bentley DJ. The effects of caffeine ingestion on time trial cycling performance. Int J Sports Physiol Perform. 2008;3(2):157–163. doi: 10.1123/ijspp.3.2.157. [PubMed] [CrossRef] [Google Scholar]

430. Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31(11):785–807. doi: 10.2165/00007256-200131110-00002. [PubMed] [CrossRef] [Google Scholar]

431. Applegate E. Effective nutritional ergogenic aids. Int J Sport Nutr. 1999;9(2):229–239. doi: 10.1123/ijsn.9.2.229. [PubMed] [CrossRef] [Google Scholar]

432. Carr A, Dawson B, Schneiker K, Goodman C, Lay B. Effect of caffeine supplementation on repeated sprint running performance. J Sports Med Phys Fitness. 2008;48(4):472–478. [PubMed] [Google Scholar]

433. Glaister M, Howatson G, Abraham CS, Lockey RA, Goodwin JE, Foley P, Mcinnes G. Caffeine supplementation and multiple sprint running performance. Med Sci Sports Exerc. 2008;40(10):1835–1840. doi: 10.1249/MSS.0b013e31817a8ad2. [PubMed] [CrossRef] [Google Scholar]

434. Trexler ET, Smith-Ryan AE, Roelofs EJ, Hirsch KR, Mock MG. Effects of coffee and caffeine anhydrous on strength and sprint performance. Eur J Sport Sci. 2016;16(6):702–710. doi: 10.1080/17461391.2015.1085097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

435. Astorino TA, Rohmann RL, Firth K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur J Appl Physiol. 2008;102(2):127–132. doi: 10.1007/s00421-007-0557-x. [PubMed] [CrossRef] [Google Scholar]

436. Beck TW, Housh TJ, Schmidt RJ, Johnson GO, Housh DJ, Coburn JW, Malek MH. The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. J Strength Cond Res. 2006;20(3):506–510. [PubMed] [Google Scholar]

437. Goldstein ER, Jacobs PL, Whitehurst M, Penhollow T, Antonio J. Caffeine enhances upper body strength in resistance-trained women. J Int Soc Sports Nutr. 2010;7(1):18. doi: 10.1186/1550-2783-7-18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

438. Duncan MJ, Oxford SW. The effect of caffeine ingestion on mood state and bench press performance to failure. J Strength Cond Res. 2011;25(1):178–185. doi: 10.1519/JSC.0b013e318201bddb. [PubMed] [CrossRef] [Google Scholar]

439. Duncan MJ, Oxford SW. Acute caffeine ingestion enhances performance and dampens muscle pain following resistance exercise to failure. J Sports Med Phys Fitness. 2012;52(3):280–285. [PubMed] [Google Scholar]

440. Duncan MJ, Smith M, Cook K, James RS. The acute effect of a caffeine-containing energy drink on mood state, readiness to invest effort, and resistance exercise to failure. J Strength Cond Res. 2012;26(10):2858–2865. doi: 10.1519/JSC.0b013e318241e124. [PubMed] [CrossRef] [Google Scholar]

441. Duncan MJ, Stanley M, Parkhouse N, Cook K, Smith M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci. 2013;13(4):392–399. doi: 10.1080/17461391.2011.635811. [PubMed] [CrossRef] [Google Scholar]

442. Collomp K, Ahmaidi S, Chatard JC, Audran M, Prefaut C. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur J Appl Physiol Occup Physiol. 1992;64(4):377–380. doi: 10.1007/BF00636227. [PubMed] [CrossRef] [Google Scholar]

443. Woolf K, Bidwell WK, Carlson AG. The effect of caffeine as an ergogenic aid in anaerobic exercise. Int J Sport Nutr Exerc Metab. 2008;18(4):412–429. doi: 10.1123/ijsnem.18.4.412. [PubMed] [CrossRef] [Google Scholar]

444. Tarnopolsky MA, Atkinson SA, Macdougall JD, Sale DG, Sutton JR. Physiological responses to caffeine during endurance running in habitual caffeine users. Med Sci Sports Exerc. 1989;21(4):418–424. doi: 10.1249/00005768-198908000-00013. [PubMed] [CrossRef] [Google Scholar]

445. Armstrong LE. Caffeine, body fluid-electrolyte balance, and exercise performance. Int J Sport Nutr Exerc Metab. 2002;12(2):189–206. doi: 10.1123/ijsnem.12.2.189. [PubMed] [CrossRef] [Google Scholar]

446. Falk B, Burstein R, Rosenblum J, Shapiro Y, Zylber-Katz E, Bashan N. Effects of caffeine ingestion on body fluid balance and thermoregulation during exercise. Can J Physiol Pharmacol. 1990;68(7):889–892. doi: 10.1139/y90-135. [PubMed] [CrossRef] [Google Scholar]

447. Below PR, Mora-Rodriguez R, Gonzalez-Alonso J, Coyle EF. Fluid and carbohydrate ingestion independently improve performance during 1 h of intense exercise. Med Sci Sports Exerc. 1995;27(2):200–210. doi: 10.1249/00005768-199502000-00009. [PubMed] [CrossRef] [Google Scholar]

448. Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc. 2004;36(12):2107–2111. doi: 10.1249/01.MSS.0000147585.65709.6F. [PubMed] [CrossRef] [Google Scholar]

449. Rollo I, Williams C, Gant N, Nute M. The influence of carbohydrate mouth rinse on self-selected speeds during a 30-min treadmill run. Int J Sport Nutr Exerc Metab. 2008;18(6):585–600. doi: 10.1123/ijsnem.18.6.585. [PubMed] [CrossRef] [Google Scholar]

450. Rollo I, Williams C, Nevill M. Influence of ingesting versus mouth rinsing a carbohydrate solution during a 1-h run. Med Sci Sports Exerc. 2011;43(3):468–475. doi: 10.1249/MSS.0b013e3181f1cda3. [PubMed] [CrossRef] [Google Scholar]

451. Sinclair J, Bottoms L, Flynn C, Bradley E, Alexander G, Mccullagh S, Finn T, Hurst HT. The effect of different durations of carbohydrate mouth rinse on cycling performance. Eur J Sport Sci. 2014;14(3):259–264. doi: 10.1080/17461391.2013.785599. [PubMed] [CrossRef] [Google Scholar]

452. Kasper AM, Cocking S, Cockayne M, Barnard M, Tench J, Parker L, Mcandrew J, Langan-Evans C, Close GL, Morton JP. Carbohydrate mouth rinse and caffeine improves high-intensity interval running capacity when carbohydrate restricted. Eur J Sport Sci. 2016;16(5):560–568. doi: 10.1080/17461391.2015.1041063. [PubMed] [CrossRef] [Google Scholar]

453. Dorling JL, Earnest CP. Effect of carbohydrate mouth rinsing on multiple sprint performance. J Int Soc Sports Nutr. 2013;10(1):41. doi: 10.1186/1550-2783-10-41. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

454. Clarke ND, Kornilios E, Richardson DL. Carbohydrate and caffeine mouth rinses do not affect maximum strength and muscular endurance performance. J Strength Cond Res. 2015;29(10):2926–2931. doi: 10.1519/JSC.0000000000000945. [PubMed] [CrossRef] [Google Scholar]

455. Dolan P, Witherbee KE, Peterson KM, Kerksick CM. Effect of carbohydrate, caffeine, and carbohydrate + caffeine mouth rinsing on intermittent running performance in collegiate male lacrosse athletes. J Strength Cond Res. 2017;31(9):2473–2479. doi: 10.1519/JSC.0000000000001819. [PubMed] [CrossRef] [Google Scholar]

456. Mock MG, Hirsch KR, MNM B, Trexler ET, Roelofs EJ, Smith-Ryan AE. Post-exercise ingestion of low or high molecular weight glucose polymer solution does not improve cycle performance in female athletes. J Strength Cond Res. 2018; 10.1519/JSC.0000000000002560. [PMC free article] [PubMed]

457. Roberts MD, Lockwood C, Dalbo VJ, Volek J, Kerksick CM. Ingestion of a high-molecular-weight hydrothermally modified waxy maize starch alters metabolic responses to prolonged exercise in trained cyclists. Nutrition. 2011;27(6):659–665. doi: 10.1016/j.nut.2010.07.008. [PubMed] [CrossRef] [Google Scholar]

458. Ormsbee MJ, Bach CW, Baur DA. Pre-exercise nutrition: the role of macronutrients, modified starches and supplements on metabolism and endurance performance. Nutrients. 2014;6(5):1782–1808. doi: 10.3390/nu6051782. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

459. Mcglory C, Morton JP. The effects of postexercise consumption of high-molecular-weight versus low-molecular-weight carbohydrate solutions on subsequent high-intensity interval-running capacity. Int J Sport Nutr Exerc Metab. 2010;20(5):361–369. doi: 10.1123/ijsnem.20.5.361. [PubMed] [CrossRef] [Google Scholar]

460. Kendall KL, Smith AE, Graef JL, Fukuda DH, Moon JR, Beck TW, Cramer JT, Stout JR. Effects of four weeks of high-intensity interval training and creatine supplementation on critical power and anaerobic working capacity in college-aged men. J Strength Cond Res. 2009;23(6):1663–1669. doi: 10.1519/JSC.0b013e3181b1fd1f. [PubMed] [CrossRef] [Google Scholar]

461. Kendall RW, Jacquemin G, Frost R, Burns SP. Creatine supplementation for weak muscles in persons with chronic tetraplegia: a randomized double-blind placebo-controlled crossover trial. J Spinal Cord Med. 2005;28(3):208–213. doi: 10.1080/10790268.2005.11753814. [PubMed] [CrossRef] [Google Scholar]

462. Kreider RB, Ferreira M, Wilson M, Grindstaff P, Plisk S, Reinardy J, Cantler E, Almada AL. Effects of creatine supplementation on body composition, strength, and sprint performance. Med Sci Sports Exerc. 1998;30(1):73–82. doi: 10.1097/00005768-199801000-00011. [PubMed] [CrossRef] [Google Scholar]

463. Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Phys. 1996;271(5 Pt 1):E821–E826. [PubMed] [Google Scholar]

464. Derave W, Op't Eijinde B, Richter EA, Hespel P. Combined creatine and protein supplementation improves glucose tolerance and muscle glycogen accumulation in humans. Abstracts of 6th Internationl conference on Guanidino compounds in biology and medicine. 2001. [Google Scholar]

465. Nelson AG, Arnall DA, Kokkonen J, Day R, Evans J. Muscle glycogen supercompensation is enhanced by prior creatine supplementation. Med Sci Sports Exerc. 2001;33(7):1096–1100. doi: 10.1097/00005768-200107000-00005. [PubMed] [CrossRef] [Google Scholar]

466. Eijnde BO'T, Richter EA, Henquin JC, Kiens B, Hespel P. Effect of creatine supplementation on creatine and glycogen content in rat skeletal muscle. Acta Physiol Scand. 2001;171(2):169–176. doi: 10.1046/j.1365-201x.2001.00786.x. [PubMed] [CrossRef] [Google Scholar]

467. Chwalbinska-Moneta J. Effect of creatine supplementation on aerobic performance and anaerobic capacity in elite rowers in the course of endurance training. Int J Sport Nutr Exerc Metab. 2003;13(2):173–183. doi: 10.1123/ijsnem.13.2.173. [PubMed] [CrossRef] [Google Scholar]

468. Nelson AG, Day R, Glickman-Weiss EL, Hegsted M, Kokkonen J, Sampson B. Creatine supplementation alters the response to a graded cycle ergometer test. Eur J Appl Physiol. 2000;83(1):89–94. doi: 10.1007/s004210000244. [PubMed] [CrossRef] [Google Scholar]

469. Nelson AG, Day R, Glickman-Weiss EL, Hegsted M, Sampson B. Creatine supplementation raises anaerobic threshold. FASEB J. 1997;11:A589. [Google Scholar]

470. Cornish SM, Chilibeck PD, Burke DG. The effect of creatine monohydrate supplementation on sprint skating in ice-hockey players. J Sports Med Phys Fitness. 2006;46(1):90–98. [PubMed] [Google Scholar]

471. Dawson B, Vladich T, Blanksby BA. Effects of 4 weeks of creatine supplementation in junior swimmers on freestyle sprint and swim bench performance. J Strength Cond Res. 2002;16(4):485–490. [PubMed] [Google Scholar]

472. Grindstaff PD, Kreider R, Bishop R, Wilson M, Wood L, Alexander C, Almada A. Effects of creatine supplementation on repetitive sprint performance and body composition in competitive swimmers. Int J Sport Nutr. 1997;7(4):330–346. doi: 10.1123/ijsn.7.4.330. [PubMed] [CrossRef] [Google Scholar]

473. Juhasz I, Gyore I, Csende Z, Racz L, Tihanyi J. Creatine supplementation improves the anaerobic performance of elite junior fin swimmers. Acta Physiol Hung. 2009;96(3):325–336. doi: 10.1556/APhysiol.96.2009.3.6. [PubMed] [CrossRef] [Google Scholar]

474. Silva AJ, Machado Reis V, Guidetti L, Bessone Alves F, Mota P, Freitas J, Baldari C. Effect of creatine on swimming velocity, body composition and hydrodynamic variables. J Sports Med Phys Fitness. 2007;47(1):58–64. [PubMed] [Google Scholar]

475. Bemben MG, Bemben DA, Loftiss DD, Knehans AW. Creatine supplementation during resistance training in college football athletes. Med Sci Sports Exerc. 2001;33(10):1667–1673. doi: 10.1097/00005768-200110000-00009. [PubMed] [CrossRef] [Google Scholar]

476. Chilibeck PD, Stride D, Farthing JP, Burke DG. Effect of creatine ingestion after exercise on muscle thickness in males and females. Med Sci Sports Exerc. 2004;36(10):1781–1788. doi: 10.1249/01.MSS.0000142301.70419.C6. [PubMed] [CrossRef] [Google Scholar]

477. Claudino JG, Mezencio B, Amaral S, Zanetti V, Benatti F, Roschel H, Gualano B, Amadio AC, Serrao JC. Creatine monohydrate supplementation on lower-limb muscle power in brazilian elite soccer players. J Int Soc Sports Nutr. 2014;11:32. doi: 10.1186/1550-2783-11-32. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

478. Galvan E, Walker DK, Simbo SY, Dalton R, Levers K, O'connor A, Goodenough C, Barringer ND, Greenwood M, Rasmussen C, Smith SB, Riechman SE, Fluckey JD, Murano PS, Earnest CP, Kreider RB. Acute and chronic safety and efficacy of dose dependent creatine nitrate supplementation and exercise performance. J Int Soc Sports Nutr. 2016;13:12. doi: 10.1186/s12970-016-0124-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

479. Kerksick CM, Wilborn CD, Campbell WI, Harvey TM, Marcello BM, Roberts MD, Parker AG, Byars AG, Greenwood LD, Almada AL, Kreider RB, Greenwood M. The effects of creatine monohydrate supplementation with and without d-pinitol on resistance training adaptations. J Strength Cond Res. 2009;23(9):2673–2682. doi: 10.1519/JSC.0b013e3181b3e0de. [PubMed] [CrossRef] [Google Scholar]

480. Stone MH, Sanborn K, Smith LL, O'bryant HS, Hoke T, Utter AC, Johnson RL, Boros R, Hruby J, Pierce KC, Stone ME, Garner B. Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in american football players. Int J Sport Nutr. 1999;9(2):146–165. doi: 10.1123/ijsn.9.2.146. [PubMed] [CrossRef] [Google Scholar]

481. Volek JS, Kraemer WJ, Bush JA, Boetes M, Incledon T, Clark KL, Lynch JM. Creatine supplementation enhances muscular performance during high-intensity resistance exercise. J Am Diet Assoc. 1997;97(7):765–770. doi: 10.1016/S0002-8223(97)00189-2. [PubMed] [CrossRef] [Google Scholar]

482. Volek JS, Mazzetti SA, Farquhar WB, Barnes BR, Gomez AL, Kraemer WJ. Physiological responses to short-term exercise in the heat after creatine loading. Med Sci Sports Exerc. 2001;33(7):1101–1108. doi: 10.1097/00005768-200107000-00006. [PubMed] [CrossRef] [Google Scholar]

483. Volek JS, Ratamess NA, Rubin MR, Gomez AL, French DN, Mcguigan MM, Scheett TP, Sharman MJ, Hakkinen K, Kraemer WJ. The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. Eur J Appl Physiol. 2004;91(5–6):628–637. doi: 10.1007/s00421-003-1031-z. [PubMed] [CrossRef] [Google Scholar]

484. Aguiar AF, Januario RS, Junior RP, Gerage AM, Pina FL, Do Nascimento MA, Padovani CR, Cyrino ES. Long-term creatine supplementation improves muscular performance during resistance training in older women. Eur J Appl Physiol. 2013;113(4):987–996. doi: 10.1007/s00421-012-2514-6. [PubMed] [CrossRef] [Google Scholar]

485. Branch JD. Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab. 2003;13(2):198–226. doi: 10.1123/ijsnem.13.2.198. [PubMed] [CrossRef] [Google Scholar]

486. Devries MC, Phillips SM. Creatine supplementation during resistance training in older adults-a meta-analysis. Med Sci Sports Exerc. 2014;46(6):1194–1203. doi: 10.1249/MSS.0000000000000220. [PubMed] [CrossRef] [Google Scholar]

487. Lanhers C, Pereira B, Naughton G, Trousselard M, Lesage FX, Dutheil F. Creatine supplementation and lower limb strength performance: a systematic review and meta-analyses. Sports Med. 2015;45(9):1285–1294. doi: 10.1007/s40279-015-0337-4. [PubMed] [CrossRef] [Google Scholar]

488. Mcmorris T, Mielcarz G, Harris RC, Swain JP, Howard A. Creatine supplementation and cognitive performance in elderly individuals. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2007;14(5):517–528. doi: 10.1080/13825580600788100. [PubMed] [CrossRef] [Google Scholar]

489. Rawson ES, Clarkson PM. Acute creatine supplementation in older men. Int J Sports Med. 2000;21(1):71–75. doi: 10.1055/s-2000-8859. [PubMed] [CrossRef] [Google Scholar]

490. Wiroth JB, Bermon S, Andrei S, Dalloz E, Hebuterne X, Dolisi C. Effects of oral creatine supplementation on maximal pedalling performance in older adults. Eur J Appl Physiol. 2001;84(6):533–539. doi: 10.1007/s004210000370. [PubMed] [CrossRef] [Google Scholar]

491. Sobolewski EJ, Thompson BJ, Smith AE, Ryan ED. The physiological effects of creatine supplementation on hydration: a review. Am J Lifestyle Med. 2011;5(4):320–327. doi: 10.1177/1559827611406071. [CrossRef] [Google Scholar]

492. Mcnaughton L, Backx K, Palmer G, Strange N. Effects of chronic bicarbonate ingestion on the performance of high- intensity work. Eur J Appl Physiol Occup Physiol. 1999;80(4):333–336. doi: 10.1007/s004210050600. [PubMed] [CrossRef] [Google Scholar]

493. Kronfeld DS, Ferrante PL, Grandjean D. Optimal nutrition for athletic performance, with emphasis on fat adaptation in dogs and horses. J Nutr. 1994;124(12 Suppl):2745S–2753S. doi: 10.1093/jn/124.suppl_12.2745S. [PubMed] [CrossRef] [Google Scholar]

494. Kraemer WJ, Gordon SE, Lynch JM, Pop ME, Clark KL. Effects of multibuffer supplementation on acid-base balance and 2,3- diphosphoglycerate following repetitive anaerobic exercise. Int J Sport Nutr. 1995;5(4):300–314. doi: 10.1123/ijsn.5.4.300. [PubMed] [CrossRef] [Google Scholar]

495. Matson LG, Tran ZV. Effects of sodium bicarbonate ingestion on anaerobic performance: a meta-analytic review. Int J Sport Nutr. 1993;3(1):2–28. doi: 10.1123/ijsn.3.1.2. [PubMed] [CrossRef] [Google Scholar]

496. Lindh AM, Peyrebrune MC, Ingham SA, Bailey DM, Folland JP. Sodium bicarbonate improves swimming performance. Int J Sports Med. 2008;29(6):519–523. doi: 10.1055/s-2007-989228. [PubMed] [CrossRef] [Google Scholar]

497. Kilding AE, Overton C, Gleave J. Effects of caffeine, sodium bicarbonate, and their combined ingestion on high-intensity cycling performance. Int J Sport Nutr Exerc Metab. 2012;22(3):175–183. doi: 10.1123/ijsnem.22.3.175. [PubMed] [CrossRef] [Google Scholar]

498. Marriott M, Krustrup P, Mohr M. Ergogenic effects of caffeine and sodium bicarbonate supplementation on intermittent exercise performance preceded by intense arm cranking exercise. J Int Soc Sports Nutr. 2015;12:13. doi: 10.1186/s12970-015-0075-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

499. Percival ME, Martin BJ, Gillen JB, Skelly LE, Macinnis MJ, Green AE, Tarnopolsky MA, Gibala MJ. Sodium bicarbonate ingestion augments the increase in pgc-1alpha mRNA expression during recovery from intense interval exercise in human skeletal muscle. J Appl Physiol. 2015;119(11):1303–1312. doi: 10.1152/japplphysiol.00048.2015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

500. Peart DJ, Siegler JC, Vince RV. Practical recommendations for coaches and athletes: a meta-analysis of sodium bicarbonate use for athletic performance. J Strength Cond Res. 2012;26(7):1975–1983. doi: 10.1519/JSC.0b013e3182576f3d. [PubMed] [CrossRef] [Google Scholar]

501. Tobias G, Benatti FB, De Salles PV, Roschel H, Gualano B, Sale C, Harris RC, Lancha AH, Jr, Artioli GG. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids. 2013;45(2):309–317. doi: 10.1007/s00726-013-1495-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

502. Danaher J, Gerber T, Wellard RM, Stathis CG. The effect of beta-alanine and nahco3 co-ingestion on buffering capacity and exercise performance with high-intensity exercise in healthy males. Eur J Appl Physiol. 2014;114(8):1715–1724. doi: 10.1007/s00421-014-2895-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

503. Folland JP, Stern R, Brickley G. Sodium phosphate loading improves laboratory cycling time-trial performance in trained cyclists. J Sci Med Sport. 2008;11(5):464–468. doi: 10.1016/j.jsams.2007.04.004. [PubMed] [CrossRef] [Google Scholar]

504. Kreider RB, Miller GW, Williams MH, Somma CT, Nasser TA. Effects of phosphate loading on oxygen uptake, ventilatory anaerobic threshold, and run performance. Med Sci Sports Exerc. 1990;22(2):250–256. doi: 10.1249/00005768-199004000-00596. [PubMed] [CrossRef] [Google Scholar]

505. Kreider RB, Miller GW, Schenck D, Cortes CW, Miriel V, Somma CT, Rowland P, Turner C, Hill D. Effects of phosphate loading on metabolic and myocardial responses to maximal and endurance exercise. Int J Sport Nutr. 1992;2(1):20–47. doi: 10.1123/ijsn.2.1.20. [PubMed] [CrossRef] [Google Scholar]

506. Cade R, Conte M, Zauner C, Mars D, Peterson J, Lunne D, Hommen N, Packer D. Effects of phosphate loading on 2,3 diphosphoglycerate and maximal oxygen uptake. Med Sci Sports Exerc. 1984;16:263–268. doi: 10.1249/00005768-198406000-00011. [PubMed] [CrossRef] [Google Scholar]

507. Stewart I, Mcnaughton L, Davies P, Tristram S. Phosphate loading and the effects of vo2max in trained cyclists. Res Quart. 1990;61:80–84. [PubMed] [Google Scholar]

508. Brewer CP, Dawson B, Wallman KE, Guelfi KJ. Effect of sodium phosphate supplementation on repeated high-intensity cycling efforts. J Sports Sci. 2015;33(11):1109–1116. doi: 10.1080/02640414.2014.989536. [PubMed] [CrossRef] [Google Scholar]

509. Kopec BJ, Dawson BT, Buck C, Wallman KE. Effects of sodium phosphate and caffeine ingestion on repeated-sprint ability in male athletes. J Sci Med Sport. 2016;19(3):272–276. doi: 10.1016/j.jsams.2015.04.001. [PubMed] [CrossRef] [Google Scholar]

510. Buck CL, Henry T, Guelfi K, Dawson B, Mcnaughton LR, Wallman K. Effects of sodium phosphate and beetroot juice supplementation on repeated-sprint ability in females. Eur J Appl Physiol. 2015;115(10):2205–2213. doi: 10.1007/s00421-015-3201-1. [PubMed] [CrossRef] [Google Scholar]

511. Buck C, Guelfi K, Dawson B, Mcnaughton L, Wallman K. Effects of sodium phosphate and caffeine loading on repeated-sprint ability. J Sports Sci. 2015;33(19):1971–1979. doi: 10.1080/02640414.2015.1025235. [PubMed] [CrossRef] [Google Scholar]

512. Brewer CP, Dawson B, Wallman KE, Guelfi KJ. Effect of sodium phosphate supplementation on cycling time trial performance and vo2 1 and 8 days post loading. J Sports Sci Med. 2014;13(3):529–534. [PMC free article] [PubMed] [Google Scholar]

513. Brewer CP, Dawson B, Wallman KE, Guelfi KJ. Effect of repeated sodium phosphate loading on cycling time-trial performance and vo2peak. Int J Sport Nutr Exerc Metab. 2013;23(2):187–194. doi: 10.1123/ijsnem.23.2.187. [PubMed] [CrossRef] [Google Scholar]

514. West JS, Ayton T, Wallman KE, Guelfi KJ. The effect of 6 days of sodium phosphate supplementation on appetite, energy intake, and aerobic capacity in trained men and women. Int J Sport Nutr Exerc Metab. 2012;22(6):422–429. doi: 10.1123/ijsnem.22.6.422. [PubMed] [CrossRef] [Google Scholar]

515. Buck CL, Dawson B, Guelfi KJ, Mcnaughton L, Wallman KE. Sodium phosphate supplementation and time trial performance in female cyclists. J Sports Sci Med. 2014;13(3):469–475. [PMC free article] [PubMed] [Google Scholar]

516. Mcdermott BP, Anderson SA, Armstrong LE, Casa DJ, Cheuvront SN, Cooper L, Kenney WL, O'connor FG, Roberts WO. National athletic trainers’ association position statement: fluid replacement for the physically active. J Athl Train. 2017;52(9):877–895. doi: 10.4085/1062-6050-52.9.02. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

517. Burke LM. Nutritional needs for exercise in the heat. Comp Biochem Physiol A Mol Integr Physiol. 2001;128(4):735–748. doi: 10.1016/S1095-6433(01)00279-3. [PubMed] [CrossRef] [Google Scholar]

518. Von Duvillard SP, Arciero PJ, Tietjen-Smith T, Alford K. Sports drinks, exercise training, and competition. Curr Sports Med Rep. 2008;7(4):202–208. doi: 10.1249/JSR.0b013e31817ffa37. [PubMed] [CrossRef] [Google Scholar]

519. Von Duvillard SP, Braun WA, Markofski M, Beneke R, Leithauser R. Fluids and hydration in prolonged endurance performance. Nutrition. 2004;20(7–8):651–656. doi: 10.1016/j.nut.2004.04.011. [PubMed] [CrossRef] [Google Scholar]

520. Goulet ED. Dehydration and endurance performance in competitive athletes. Nutr Rev. 2012;70(Suppl 2):S132–S136. doi: 10.1111/j.1753-4887.2012.00530.x. [PubMed] [CrossRef] [Google Scholar]

521. Goulet ED. Effect of exercise-induced dehydration on time-trial exercise performance: a meta-analysis. Br J Sports Med. 2011;45(14):1149–1156. doi: 10.1136/bjsm.2010.077966. [PubMed] [CrossRef] [Google Scholar]

522. Rogero MM, Tirapegui J, Pedrosa RG, Castro IA, Pires IS. Effect of alanyl-glutamine supplementation on plasma and tissue glutamine concentrations in rats submitted to exhaustive exercise. Nutrition. 2006;22(5):564–571. doi: 10.1016/j.nut.2005.11.002. [PubMed] [CrossRef] [Google Scholar]

523. Cruzat VF, Rogero MM, Tirapegui J. Effects of supplementation with free glutamine and the dipeptide alanyl-glutamine on parameters of muscle damage and inflammation in rats submitted to prolonged exercise. Cell Biochem Funct. 2010;28(1):24–30. doi: 10.1002/cbf.1611. [PubMed] [CrossRef] [Google Scholar]

524. Hoffman JR, Ratamess NA, Kang J, Rashti SL, Kelly N, Gonzalez AM, Stec M, Anderson S, Bailey BL, Yamamoto LM, Hom LL, Kupchak BR, Faigenbaum AD, Maresh CM. Examination of the efficacy of acute l-alanyl-l-glutamine ingestion during hydration stress in endurance exercise. J Int Soc Sports Nutr. 2010;7:8. doi: 10.1186/1550-2783-7-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

525. Hoffman JR, Williams DR, Emerson NS, Hoffman MW, Wells AJ, Mcveigh DM, Mccormack WP, Mangine GT, Gonzalez AM, Fragala MS. L-alanyl-l-glutamine ingestion maintains performance during a competitive basketball game. J Int Soc Sports Nutr. 2012;9(1):4. doi: 10.1186/1550-2783-9-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

526. Pruna GJ, Hoffman JR, Mccormack WP, Jajtner AR, Townsend JR, Bohner JD, La Monica MB, Wells AJ, Stout JR, Fragala MS, Fukuda DH. Effect of acute l-alanyl-l-glutamine and electrolyte ingestion on cognitive function and reaction time following endurance exercise. Eur J Sport Sci. 2016;16(1):72–79. doi: 10.1080/17461391.2014.969325. [PubMed] [CrossRef] [Google Scholar]

527. Mccormack WP, Hoffman JR, Pruna GJ, Jajtner AR, Townsend JR, Stout JR, Fragala MS, Fukuda DH. Effects of l-alanyl-l-glutamine ingestion on one-hour run performance. J Am Coll Nutr. 2015;34(6):488–496. doi: 10.1080/07315724.2015.1009193. [PubMed] [CrossRef] [Google Scholar]

528. Ayre KJ, Hulbert AJ. Dietary fatty acid profile influences the composition of skeletal muscle phospholipids in rats. J Nutr. 1996;126(3):653–662. doi: 10.1093/jn/126.3.653. [PubMed] [CrossRef] [Google Scholar]

529. Zhou L, Nilsson A. Sources of eicosanoid precursor fatty acid pools in tissues. J Lipid Res. 2001;42(10):1521–1542. [PubMed] [Google Scholar]

530. Kelley DS, Taylor PC, Nelson GJ, Mackey BE. Arachidonic acid supplementation enhances synthesis of eicosanoids without suppressing immune functions in young healthy men. Lipids. 1998;33(2):125–130. doi: 10.1007/s11745-998-0187-9. [PubMed] [CrossRef] [Google Scholar]

531. Helge JW, Wu BJ, Willer M, Daugaard JR, Storlien LH, Kiens B. Training affects muscle phospholipid fatty acid composition in humans. J Appl Physiol. 2001;90(2):670–677. doi: 10.1152/jappl.2001.90.2.670. [PubMed] [CrossRef] [Google Scholar]

532. Kulmacz RJ, Pendleton RB, Lands WE. Interaction between peroxidase and cyclooxygenase activities in prostaglandin-endoperoxide synthase. Interpretation of reaction kinetics. J Biol Chem. 1994;269(8):5527–5536. [PubMed] [Google Scholar]

533. Roberts MD, Iosia M, Kerksick CM, Taylor LW, Campbell B, Wilborn CD, Harvey T, Cooke M, Rasmussen C, Greenwood M, Wilson R, Jitomir J, Willoughby D, Kreider RB. Effects of arachidonic acid supplementation on training adaptations in resistance-trained males. J Int Soc Sports Nutr. 2007;4:21. doi: 10.1186/1550-2783-4-21. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

534. De Souza EO, Lowery RP, Wilson JM, Sharp MH, Mobley CB, Fox CD, Lopez HL, Shields KA, Rauch JT, Healy JC, Thompson RM, Ormes JA, Joy JM, Roberts MD. Effects of arachidonic acid supplementation on acute anabolic signaling and chronic functional performance and body composition adaptations. PLoS One. 2016;11(5):e0155153. doi: 10.1371/journal.pone.0155153. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

535. Mitchell CJ, D'souza RF, Figueiredo VC, Chan A, Aasen K, Durainayagam B, Mitchell S, Sinclair AJ, Egner IM, Raastad T, Cameron-Smith D, Markworth JF. Effect of dietary arachidonic acid supplementation on acute muscle adaptive responses to resistance exercise in trained men: a randomized controlled trial. J Appl Physiol. 2018;124(4):1080–1091. doi: 10.1152/japplphysiol.01100.2017. [PubMed] [CrossRef] [Google Scholar]

536. Mikulski T, Dabrowski J, Hilgier W, Ziemba A, Krzeminski K. Effects of supplementation with branched chain amino acids and ornithine aspartate on plasma ammonia and central fatigue during exercise in healthy men. Folia Neuropathol. 2015;53(4):377–386. doi: 10.5114/fn.2015.56552. [PubMed] [CrossRef] [Google Scholar]

537. Negro M, Giardina S, Marzani B, Marzatico F. Branched-chain amino acid supplementation does not enhance athletic performance but affects muscle recovery and the immune system. J Sports Med Phys Fitness. 2008;48(3):347–351. [PubMed] [Google Scholar]

538. Greer BK, Woodard JL, White JP, Arguello EM, Haymes EM. Branched-chain amino acid supplementation and indicators of muscle damage after endurance exercise. Int J Sport Nutr Exerc Metab. 2007;17(6):595–607. doi: 10.1123/ijsnem.17.6.595. [PubMed] [CrossRef] [Google Scholar]

539. Haines RJ, Pendleton LC, Eichler DC. Argininosuccinate synthase: at the center of arginine metabolism. Int J Biochem Mol Biol. 2011;2(1):8–23. [PMC free article] [PubMed] [Google Scholar]

541. Van De Poll MC, Siroen MP, Van Leeuwen PA, Soeters PB, Melis GC, Boelens PG, Deutz NE, Dejong CH. Interorgan amino acid exchange in humans: consequences for arginine and citrulline metabolism. Am J Clin Nutr. 2007;85(1):167–172. doi: 10.1093/ajcn/85.1.167. [PubMed] [CrossRef] [Google Scholar]

542. Curis E, Nicolis I, Moinard C, Osowska S, Zerrouk N, Benazeth S, Cynober L. Almost all about citrulline in mammals. Amino Acids. 2005;29(3):177–205. doi: 10.1007/s00726-005-0235-4. [PubMed] [CrossRef] [Google Scholar]

543. Schwedhelm E, Maas R, Freese R, Jung D, Lukacs Z, Jambrecina A, Spickler W, Schulze F, Boger RH. Pharmacokinetic and pharmacodynamic properties of oral l-citrulline and l-arginine: impact on nitric oxide metabolism. Br J Clin Pharmacol. 2008;65(1):51–59. doi: 10.1111/j.1365-2125.2007.02990.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

544. Wijnands KA, Vink H, Briede JJ, Van Faassen EE, Lamers WH, Buurman WA, Poeze M. Citrulline a more suitable substrate than arginine to restore no production and the microcirculation during endotoxemia. PLoS One. 2012;7(5):e37439. doi: 10.1371/journal.pone.0037439. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

545. Mckinley-Barnard S, Andre T, Morita M, Willoughby DS. Combined l-citrulline and glutathione supplementation increases the concentration of markers indicative of nitric oxide synthesis. J Int Soc Sports Nutr. 2015;12:27. doi: 10.1186/s12970-015-0086-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

546. Suzuki T, Morita M, Kobayashi Y, Kamimura A. Oral l-citrulline supplementation enhances cycling time trial performance in healthy trained men: double-blind randomized placebo-controlled 2-way crossover study. J Int Soc Sports Nutr. 2016;13:6. doi: 10.1186/s12970-016-0117-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

547. Bailey SJ, Blackwell JR, Lord T, Vanhatalo A, Winyard PG, Jones AM. L-citrulline supplementation improves o2 uptake kinetics and high-intensity exercise performance in humans. J Appl Physiol. 2015;119(4):385–395. doi: 10.1152/japplphysiol.00192.2014. [PubMed] [CrossRef] [Google Scholar]

548. Cunniffe B, Papageorgiou M, O'brien B, Davies NA, Grimble GK, Cardinale M. Acute citrulline-malate supplementation and high-intensity cycling performance. J Strength Cond Res. 2016;30(9):2638–2647. doi: 10.1519/JSC.0000000000001338. [PubMed] [CrossRef] [Google Scholar]

549. Glenn JM, Gray M, Wethington LN, Stone MS, Stewart RW, Jr, Moyen NE. Acute citrulline malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females. Eur J Nutr. 2017;56(2):775–784. doi: 10.1007/s00394-015-1124-6. [PubMed] [CrossRef] [Google Scholar]

550. Wax B, Kavazis AN, Luckett W. Effects of supplemental citrulline-malate ingestion on blood lactate, cardiovascular dynamics, and resistance exercise performance in trained males. J Dietary Suppl. 2016;13(3):269–282. doi: 10.3109/19390211.2015.1008615. [PubMed] [CrossRef] [Google Scholar]

551. Wax B, Kavazis AN, Weldon K, Sperlak J. Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise in advanced weightlifters. J Strength Cond Res. 2015;29(3):786–792. doi: 10.1519/JSC.0000000000000670. [PubMed] [CrossRef] [Google Scholar]

552. Cutrufello PT, Gadomski SJ, Zavorsky GS. The effect of l-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. J Sports Sci. 2015;33(14):1459–1466. doi: 10.1080/02640414.2014.990495. [PubMed] [CrossRef] [Google Scholar]

553. Wagenmakers AJ. Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc Sport Sci Rev. 1998;26:287–314. doi: 10.1249/00003677-199800260-00013. [PubMed] [CrossRef] [Google Scholar]

554. Pasiakos SM, Mcclung JP. Supplemental dietary leucine and the skeletal muscle anabolic response to essential amino acids. Nutr Rev. 2011;69(9):550–557. doi: 10.1111/j.1753-4887.2011.00420.x. [PubMed] [CrossRef] [Google Scholar]

555. Tipton KD, Wolfe RR. Exercise, protein metabolism, and muscle growth. Int J Sport Nutr Exerc Metab. 2001;11(1):109–132. doi: 10.1123/ijsnem.11.1.109. [PubMed] [CrossRef] [Google Scholar]

556. Goulet ED, Aubertin-Leheudre M, Plante GE, Dionne IJ. A meta-analysis of the effects of glycerol-induced hyperhydration on fluid retention and endurance performance. Int J Sport Nutr Exerc Metab. 2007;17(4):391–410. doi: 10.1123/ijsnem.17.4.391. [PubMed] [CrossRef] [Google Scholar]

557. Wagner DR. Hyperhydrating with glycerol: implications for athletic performance. J Am Diet Assoc. 1999;99(2):207–212. doi: 10.1016/S0002-8223(99)00049-8. [PubMed] [CrossRef] [Google Scholar]

558. Van Rosendal SP, Osborne MA, Fassett RG, Coombes JS. Physiological and performance effects of glycerol hyperhydration and rehydration. Nutr Rev. 2009;67(12):690–705. doi: 10.1111/j.1753-4887.2009.00254.x. [PubMed] [CrossRef] [Google Scholar]

559. Inder WJ, Swanney MP, Donald RA, Prickett TC, Hellemans J. The effect of glycerol and desmopressin on exercise performance and hydration in triathletes. Med Sci Sports Exerc. 1998;30(8):1263–1269. doi: 10.1097/00005768-199808000-00013. [PubMed] [CrossRef] [Google Scholar]

560. Montner P, Stark DM, Riedesel ML, Murata G, Robergs R, Timms M, Chick TW. Pre-exercise glycerol hydration improves cycling endurance time. Int J Sports Med. 1996;17(1):27–33. doi: 10.1055/s-2007-972804. [PubMed] [CrossRef] [Google Scholar]

561. Boulay MR, Song TM, Serresse O, Theriault G, Simoneau JA, Bouchard C. Changes in plasma electrolytes and muscle substrates during short-term maximal exercise in humans. Can J Appl Physiol. 1995;20(1):89–101. doi: 10.1139/h95-007. [PubMed] [CrossRef] [Google Scholar]

562. Tikuisis P, Ducharme MB, Moroz D, Jacobs I. Physiological responses of exercised-fatigued individuals exposed to wet-cold conditions. J Appl Physiol. 1999;86(4):1319–1328. doi: 10.1152/jappl.1999.86.4.1319. [PubMed] [CrossRef] [Google Scholar]

563. Jimenez C, Melin B, Koulmann N, Allevard AM, Launay JC, Savourey G. Plasma volume changes during and after acute variations of body hydration level in humans. Eur J Appl Physiol Occup Physiol. 1999;80(1):1–8. doi: 10.1007/s004210050550. [PubMed] [CrossRef] [Google Scholar]

564. Magal M, Webster MJ, Sistrunk LE, Whitehead MT, Evans RK, Boyd JC. Comparison of glycerol and water hydration regimens on tennis-related performance. Med Sci Sports Exerc. 2003;35(1):150–156. doi: 10.1097/00005768-200301000-00023. [PubMed] [CrossRef] [Google Scholar]

565. Coutts A, Reaburn P, Mummery K, Holmes M. The effect of glycerol hyperhydration on olympic distance triathlon performance in high ambient temperatures. Int J Sport Nutr Exerc Metab. 2002;12(21):105–119. doi: 10.1123/ijsnem.12.1.105. [PubMed] [CrossRef] [Google Scholar]

566. Goulet ED, Rousseau SF, Lamboley CR, Plante GE, Dionne IJ. Pre-exercise hyperhydration delays dehydration and improves endurance capacity during 2 h of cycling in a temperate climate. J Physiol Anthropol. 2008;27(5):263–271. doi: 10.2114/jpa2.27.263. [PubMed] [CrossRef] [Google Scholar]

567. Marino FE, Kay D, Cannon J. Glycerol hyperhydration fails to improve endurance performance and thermoregulation in humans in a warm humid environment. Pflugers Arch. 2003;446(4):455–462. doi: 10.1007/s00424-003-1058-3. [PubMed] [CrossRef] [Google Scholar]

568. Goulet ED, Robergs RA, Labrecque S, Royer D, Dionne IJ. Effect of glycerol-induced hyperhydration on thermoregulatory and cardiovascular functions and endurance performance during prolonged cycling in a 25 degrees c environment. Appl Physiol Nutr Metab. 2006;31(2):101–109. doi: 10.1139/h05-006. [PubMed] [CrossRef] [Google Scholar]

569. Mckenna ZJ, Gillum TL. Effects of exercise induced dehydration and glycerol rehydration on anaerobic power in male collegiate wrestlers. J Strength Cond Res. 2017;31(11):2965–2968. doi: 10.1519/JSC.0000000000001871. [PubMed] [CrossRef] [Google Scholar]

570. Nelson JL, Robergs RA. Exploring the potential ergogenic effects of glycerol hyperhydration. Sports Med. 2007;37(11):981–1000. doi: 10.2165/00007256-200737110-00005. [PubMed] [CrossRef] [Google Scholar]

571. Rowlands DS, Thomson JS. Effects of beta-hydroxy-beta-methylbutyrate supplementation during resistance training on strength, body composition, and muscle damage in trained and untrained young men: a meta-analysis. J Strength Cond Res. 2009;23(3):836–846. doi: 10.1519/JSC.0b013e3181a00c80. [PubMed] [CrossRef] [Google Scholar]

572. Thomson JS, Watson PE, Rowlands DS. Effects of nine weeks of beta-hydroxy-beta- methylbutyrate supplementation on strength and body composition in resistance trained men. J Strength Cond Res. 2009;23(3):827–835. doi: 10.1519/JSC.0b013e3181a00d47. [PubMed] [CrossRef] [Google Scholar]

573. Hoffman JR, Cooper J, Wendell M, Im J, Kang J. Effects of beta-hydroxy beta-methylbutyrate on power performance and indices of muscle damage and stress during high-intensity training. J Strength Cond Res. 2004;18(4):747–752. [PubMed] [Google Scholar]

574. O'connor DM, Crowe MJ. Effects of beta-hydroxy-beta-methylbutyrate and creatine monohydrate supplementation on the aerobic and anaerobic capacity of highly trained athletes. J Sports Med Phys Fitness. 2003;43(1):64–68. [PubMed] [Google Scholar]

575. Vukovich MD, Dreifort GD. Effect of beta-hydroxy beta-methylbutyrate on the onset of blood lactate accumulation and v(o)(2) peak in endurance-trained cyclists. J Strength Cond Res. 2001;15(4):491–497. [PubMed] [Google Scholar]

576. Lamboley CR, Royer D, Dionne IJ. Effects of beta-hydroxy-beta-methylbutyrate on aerobic-performance components and body composition in college students. Int J Sport Nutr Exerc Metab. 2007;17(1):56–69. doi: 10.1123/ijsnem.17.1.56. [PubMed] [CrossRef] [Google Scholar]

577. Fuller JC, Jr, Sharp RL, Angus HF, Baier SM, Rathmacher JA. Free acid gel form of beta-hydroxy-beta-methylbutyrate (hmb) improves hmb clearance from plasma in human subjects compared with the calcium hmb salt. Br J Nutr. 2011;105(3):367–372. doi: 10.1017/S0007114510003582. [PubMed] [CrossRef] [Google Scholar]

578. Wilson JM, Lowery RP, Joy JM, Andersen JC, Wilson SM, Stout JR, Duncan N, Fuller JC, Baier SM, Naimo MA, Rathmacher J. The effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: a randomized, double-blind, placebo-controlled study. Eur J Appl Physiol. 2014;114(6):1217–1227. doi: 10.1007/s00421-014-2854-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

579. Lowery RP, Joy JM, Rathmacher JA, Baier SM, Fuller JC, Jr, Shelley MC, 2nd, Jager R, Purpura M, Wilson SM, Wilson JM. Interaction of beta-hydroxy-beta-methylbutyrate free acid and adenosine triphosphate on muscle mass, strength, and power in resistance trained individuals. J Strength Cond Res. 2016;30(7):1843–1854. doi: 10.1519/JSC.0000000000000482. [PubMed] [CrossRef] [Google Scholar]

580. Phillips SM, Aragon AA, Arciero PJ, Arent SM, Close GL, Hamilton DL, Helms ER, Henselmans M, Loenneke JP, Norton LE, Ormsbee MJ, Sale C, Schoenfeld BJ, Smithryan AE, Tipton KD, Vukovich MD, Wilborn C, Willoughby DS. Changes in body composition and performance with supplemental hmb-fa+atp. J Strength Cond Res. 2017;31(5):e71–e72. doi: 10.1519/JSC.0000000000001760. [PubMed] [CrossRef] [Google Scholar]

581. Silva VR, Belozo FL, Micheletti TO, Conrado M, Stout JR, Pimentel GD, Gonzalez AM. Beta-hydroxy-beta-methylbutyrate free acid supplementation may improve recovery and muscle adaptations after resistance training: a systematic review. Nutr Res. 2017;45:1–9. doi: 10.1016/j.nutres.2017.07.008. [PubMed] [CrossRef] [Google Scholar]

582. Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, Weitzberg E. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011;13(2):149–159. doi: 10.1016/j.cmet.2011.01.004. [PubMed] [CrossRef] [Google Scholar]

583. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol (Oxf) 2007;191(1):59–66. doi: 10.1111/j.1748-1716.2007.01713.x. [PubMed] [CrossRef] [Google Scholar]

584. Vanhatalo A, Fulford J, Bailey SJ, Blackwell JR, Winyard PG, Jones AM. Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J Physiol. 2011;589(Pt 22):5517–5528. doi: 10.1113/jphysiol.2011.216341. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

585. Hoon MW, Johnson NA, Chapman PG, Burke LM. The effect of nitrate supplementation on exercise performance in healthy individuals: a systematic review and meta-analysis. Int J Sport Nutr Exerc Metab. 2013;23(5):522–532. doi: 10.1123/ijsnem.23.5.522. [PubMed] [CrossRef] [Google Scholar]

586. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med. 2010;48(2):342–347. doi: 10.1016/j.freeradbiomed.2009.11.006. [PubMed] [CrossRef] [Google Scholar]

587. Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10. doi: 10.3945/ajcn.2008.27131. [PubMed] [CrossRef] [Google Scholar]

588. Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, Rashid R, Miall P, Deanfield J, Benjamin N, Macallister R, Hobbs AJ, Ahluwalia A. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51(3):784–790. doi: 10.1161/HYPERTENSIONAHA.107.103523. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

589. Joy JM, Lowery RP, Falcone PH, Mosman MM, Vogel RM, Carson LR, Tai CY, Choate D, Kimber D, Ormes JA, Wilson JM, Moon JR. 28 days of creatine nitrate supplementation is apparently safe in healthy individuals. J Int Soc Sports Nutr. 2014;11(1):60. doi: 10.1186/s12970-014-0060-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

590. Bescos R, Rodriguez FA, Iglesias X, Ferrer MD, Iborra E, Pons A. Acute administration of inorganic nitrate reduces vo(2peak) in endurance athletes. Med Sci Sports Exerc. 2011;43(10):1979–1986. doi: 10.1249/MSS.0b013e318217d439. [PubMed] [CrossRef] [Google Scholar]

591. Peeling P, Cox GR, Bullock N, Burke LM. Beetroot juice improves on-water 500 m time-trial performance, and laboratory-based paddling economy in national and international-level kayak athletes. Int J Sport Nutr Exerc Metab. 2015;25(3):278–284. doi: 10.1123/ijsnem.2014-0110. [PubMed] [CrossRef] [Google Scholar]

592. Muggeridge DJ, Howe CC, Spendiff O, Pedlar C, James PE, Easton C. The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers. Int J Sport Nutr Exerc Metab. 2013;23(5):498–506. doi: 10.1123/ijsnem.23.5.498. [PubMed] [CrossRef] [Google Scholar]

593. Wilkerson DP, Hayward GM, Bailey SJ, Vanhatalo A, Blackwell JR, Jones AM. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur J Appl Physiol. 2012;112(12):4127–4134. doi: 10.1007/s00421-012-2397-6. [PubMed] [CrossRef] [Google Scholar]

594. Macleod KE, Nugent SF, Barr SI, Koehle MS, Sporer BC, Macinnis MJ. Acute beetroot juice supplementation does not improve cycling performance in normoxia or moderate hypoxia. Int J Sport Nutr Exerc Metab. 2015;25(4):359–366. doi: 10.1123/ijsnem.2014-0129. [PubMed] [CrossRef] [Google Scholar]

595. Arnold JT, Oliver SJ, Lewis-Jones TM, Wylie LJ, Macdonald JH. Beetroot juice does not enhance altitude running performance in well-trained athletes. Appl Physiol Nutr Metab. 2015;40(6):590–595. doi: 10.1139/apnm-2014-0470. [PubMed] [CrossRef] [Google Scholar]

596. Nyakayiru JM, Jonvik KL, Pinckaers PJ, Senden J, Van Loon LJ, Verdijk LB. No effect of acute and 6-day nitrate supplementation on vo2 and time-trial performance in highly trained cyclists. Int J Sport Nutr Exerc Metab. 2017;27(1):11–17. doi: 10.1123/ijsnem.2016-0034. [PubMed] [CrossRef] [Google Scholar]

597. Lane SC, Hawley JA, Desbrow B, Jones AM, Blackwell JR, Ross ML, Zemski AJ, Burke LM. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl Physiol Nutr Metab. 2014;39(9):1050–1057. doi: 10.1139/apnm-2013-0336. [PubMed] [CrossRef] [Google Scholar]

598. Gilchrist M, Winyard PG, Aizawa K, Anning C, Shore A, Benjamin N. Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes. Free Radic Biol Med. 2013;60:89–97. doi: 10.1016/j.freeradbiomed.2013.01.024. [PubMed] [CrossRef] [Google Scholar]

599. Jajja A, Sutyarjoko A, Lara J, Rennie K, Brandt K, Qadir O, Siervo M. Beetroot supplementation lowers daily systolic blood pressure in older, overweight subjects. Nutr Res. 2014;34(10):868–875. doi: 10.1016/j.nutres.2014.09.007. [PubMed] [CrossRef] [Google Scholar]

600. Kelly J, Fulford J, Vanhatalo A, Blackwell JR, French O, Bailey SJ, Gilchrist M, Winyard PG, Jones AM. Effects of short-term dietary nitrate supplementation on blood pressure, o2 uptake kinetics, and muscle and cognitive function in older adults. Am J Physiol Regul Integr Comp Physiol. 2013;304(2):R73–R83. doi: 10.1152/ajpregu.00406.2012. [PubMed] [CrossRef] [Google Scholar]

601. Kenjale AA, Ham KL, Stabler T, Robbins JL, Johnson JL, Vanbruggen M, Privette G, Yim E, Kraus WE, Allen JD. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J Appl Physiol. 2011;110(6):1582–1591. doi: 10.1152/japplphysiol.00071.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

602. De Oliveira GV, Morgado M, Pierucci AP, Alvares TS. A single dose of a beetroot-based nutritional gel improves endothelial function in the elderly with cardiovascular risk factors. J Functional Foods. 2016;26:301–308. doi: 10.1016/j.jff.2016.08.017. [CrossRef] [Google Scholar]

603. Koopman R, Beelen M, Stellingwerff T, Pennings B, Saris WH, Kies AK, Kuipers H, Van Loon LJ. Coingestion of carbohydrate with protein does not further augment postexercise muscle protein synthesis. Am J Physiol Endocrinol Metab. 2007;293(3):E833–E842. doi: 10.1152/ajpendo.00135.2007. [PubMed] [CrossRef] [Google Scholar]

604. Phillips SM. Insulin and muscle protein turnover in humans: stimulatory, permissive, inhibitory, or all of the above? Am J Physiol Endocrinol Metab. 2008;295(4):E731. doi: 10.1152/ajpendo.90569.2008. [PubMed] [CrossRef] [Google Scholar]

605. Staples AW, Burd NA, West DW, Currie KD, Atherton PJ, Moore DR, Rennie MJ, Macdonald MJ, Baker SK, Phillips SM. Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Med Sci Sports Exerc. 2011;43(7):1154–1161. doi: 10.1249/MSS.0b013e31820751cb. [PubMed] [CrossRef] [Google Scholar]

606. Romano-Ely BC, Todd MK, Saunders MJ, Laurent TS. Effect of an isocaloric carbohydrate-protein-antioxidant drink on cycling performance. Med Sci Sports Exerc. 2006;38(9):1608–1616. doi: 10.1249/01.mss.0000229458.11452.e9. [PubMed] [CrossRef] [Google Scholar]

607. Cribb PJ, Hayes A. Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc. 2006;38(11):1918–1925. doi: 10.1249/01.mss.0000233790.08788.3e. [PubMed] [CrossRef] [Google Scholar]

608. Kreider RB, Earnest CP, Lundberg J, Rasmussen C, Greenwood M, Cowan P, Almada AL. Effects of ingesting protein with various forms of carbohydrate following resistance-exercise on substrate availability and markers of anabolism, catabolism, and immunity. J Int Soc Sports Nutr. 2007;4:18. doi: 10.1186/1550-2783-4-18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

609. Hulmi JJ, Laakso M, Mero AA, Hakkinen K, Ahtiainen JP, Peltonen H. The effects of whey protein with or without carbohydrates on resistance training adaptations. J Int Soc Sports Nutr. 2015;12:48. doi: 10.1186/s12970-015-0109-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

610. Cureton KJ, Tomporowski PD, Singhal A, Pasley JD, Bigelman KA, Lambourne K, Trilk JL, Mccully KK, Arnaud MJ, Zhao Q. Dietary quercetin supplementation is not ergogenic in untrained men. J Appl Physiol. 2009;107(4):1095–1104. doi: 10.1152/japplphysiol.00234.2009. [PubMed] [CrossRef] [Google Scholar]

611. Bigelman KA, Fan EH, Chapman DP, Freese EC, Trilk JL, Cureton KJ. Effects of six weeks of quercetin supplementation on physical performance in rotc cadets. Mil Med. 2010;175(10):791–798. doi: 10.7205/MILMED-D-09-00088. [PubMed] [CrossRef] [Google Scholar]

612. Scholten SD, Sergeev IN. Long-term quercetin supplementation reduces lipid peroxidation but does not improve performance in endurance runners. Open Access J Sports Med. 2013;4:53–61. doi: 10.2147/OAJSM.S39632. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

613. Ganio MS, Armstrong LE, Johnson EC, Klau JF, Ballard KD, Michniak-Kohn B, Kaushik D, Maresh CM. Effect of quercetin supplementation on maximal oxygen uptake in men and women. J Sports Sci. 2010;28(2):201–208. doi: 10.1080/02640410903428558. [PubMed] [CrossRef] [Google Scholar]

614. Nieman DC, Williams AS, Shanely RA, Jin F, Mcanulty SR, Triplett NT, Austin MD, Henson DA. Quercetin's influence on exercise performance and muscle mitochondrial biogenesis. Med Sci Sports Exerc. 2010;42(2):338–345. doi: 10.1249/MSS.0b013e3181b18fa3. [PubMed] [CrossRef] [Google Scholar]

615. Patrizio F, Ditroilo M, Felici F, Duranti G, De Vito G, Sabatini S, Sacchetti M, Bazzucchi I. The acute effect of quercetin on muscle performance following a single resistance training session. Eur J Appl Physiol. 2018;118(5):1021–1031. doi: 10.1007/s00421-018-3834-y. [PubMed] [CrossRef] [Google Scholar]

616. Davis JM, Carlstedt CJ, Chen S, Carmichael MD, Murphy EA. The dietary flavonoid quercetin increases vo(2max) and endurance capacity. Int J Sport Nutr Exerc Metab. 2010;20(1):56–62. doi: 10.1123/ijsnem.20.1.56. [PubMed] [CrossRef] [Google Scholar]

617. Pelletier DM, Lacerte G, Goulet ED. Effects of quercetin supplementation on endurance performance and maximal oxygen consumption: a meta-analysis. Int J Sport Nutr Exerc Metab. 2013;23(1):73–82. doi: 10.1123/ijsnem.23.1.73. [PubMed] [CrossRef] [Google Scholar]

618. Kressler J, Millard-Stafford M, Warren GL. Quercetin and endurance exercise capacity: a systematic review and meta-analysis. Med Sci Sports Exerc. 2011;43(12):2396–2404. doi: 10.1249/MSS.0b013e31822495a7. [PubMed] [CrossRef] [Google Scholar]

619. Harris RC, Wise JA, Price KA, Kim HJ, Kim CK, Sale C. Determinants of muscle carnosine content. Amino Acids. 2012;43(1):5–12. doi: 10.1007/s00726-012-1233-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

620. Pierno S, Liantonio A, Camerino GM, De Bellis M, Cannone M, Gramegna G, Scaramuzzi A, Simonetti S, Nicchia GP, Basco D, Svelto M, Desaphy JF, Camerino DC. Potential benefits of taurine in the prevention of skeletal muscle impairment induced by disuse in the hindlimb-unloaded rat. Amino Acids. 2012;43(1):431–445. doi: 10.1007/s00726-011-1099-4. [PubMed] [CrossRef] [Google Scholar]

621. Schaffer SW, Jong CJ, Ramila KC, Azuma J. Physiological roles of taurine in heart and muscle. J Biomed Sci. 2010;17(Suppl 1):S2. doi: 10.1186/1423-0127-17-S1-S2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

622. Huxtable RJ. Physiological actions of taurine. Physiol Rev. 1992;72(1):101–163. doi: 10.1152/physrev.1992.72.1.101. [PubMed] [CrossRef] [Google Scholar]

623. Silva LA, Silveira PC, Ronsani MM, Souza PS, Scheffer D, Vieira LC, Benetti M, De Souza CT, Pinho RA. Taurine supplementation decreases oxidative stress in skeletal muscle after eccentric exercise. Cell Biochem Funct. 2011;29(1):43–49. doi: 10.1002/cbf.1716. [PubMed] [CrossRef] [Google Scholar]

624. Graham TE, Turcotte LP, Kiens B, Richter EA. Training and muscle ammonia and amino acid metabolism in humans during prolonged exercise. J Appl Physiol. 1995;78(2):725–735. doi: 10.1152/jappl.1995.78.2.725. [PubMed] [CrossRef] [Google Scholar]

625. Balshaw TG, Bampouras TM, Barry TJ, Sparks SA. The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners. Amino Acids. 2013;44(2):555–561. doi: 10.1007/s00726-012-1372-1. [PubMed] [CrossRef] [Google Scholar]

626. Imagawa TF, Hirano I, Utsuki K, Horie M, Naka A, Matsumoto K, Imagawa S. Caffeine and taurine enhance endurance performance. Int J Sports Med. 2009;30(7):485–488. doi: 10.1055/s-0028-1104574. [PubMed] [CrossRef] [Google Scholar]

627. Rutherford JA, Spriet LL, Stellingwerff T. The effect of acute taurine ingestion on endurance performance and metabolism in well-trained cyclists. Int J Sport Nutr Exerc Metab. 2010;20(4):322–329. doi: 10.1123/ijsnem.20.4.322. [PubMed] [CrossRef] [Google Scholar]

628. Milioni F, Malta Ede S, Rocha LG, Mesquita CA, De Freitas EC, Zagatto AM. Acute administration of high doses of taurine does not substantially improve high-intensity running performance and the effect on maximal accumulated oxygen deficit is unclear. Appl Physiol Nutr Metab. 2016;41(5):498–503. doi: 10.1139/apnm-2015-0435. [PubMed] [CrossRef] [Google Scholar]

629. Mcleay Y, Stannard S, Barnes M. The effect of taurine on the recovery from eccentric exercise-induced muscle damage in males. Antioxidants (Basel). 2017;6(4). [PMC free article] [PubMed]

630. Warnock R, Jeffries O, Patterson S, Waldron M. The effects of caffeine, taurine, or caffeine-taurine coingestion on repeat-sprint cycling performance and physiological responses. Int J Sports Physiol Perform. 2017;12(10):1341–1347. doi: 10.1123/ijspp.2016-0570. [PubMed] [CrossRef] [Google Scholar]

631. Waldron M, Patterson SD, Tallent J, Jeffries O. The effects of an oral taurine dose and supplementation period on endurance exercise performance in humans: a meta-analysis. Sports Med. 2018;48(5):1247–1253. doi: 10.1007/s40279-018-0896-2. [PubMed] [CrossRef] [Google Scholar]

632. Da Silva LA, Tromm CB, Bom KF, Mariano I, Pozzi B, Da Rosa GL, Tuon T, Da Luz G, Vuolo F, Petronilho F, Cassiano W, De Souza CT, Pinho RA. Effects of taurine supplementation following eccentric exercise in young adults. Appl Physiol Nutr Metab. 2014;39(1):101–104. doi: 10.1139/apnm-2012-0229. [PubMed] [CrossRef] [Google Scholar]

633. Ra SG, Akazawa N, Choi Y, Matsubara T, Oikawa S, Kumagai H, Tanahashi K, Ohmori H, Maeda S. Taurine supplementation reduces eccentric exercise-induced delayed onset muscle soreness in young men. Adv Exp Med Biol. 2015;803:765–772. doi: 10.1007/978-3-319-15126-7_61. [PubMed] [CrossRef] [Google Scholar]

634. Zhang M, Izumi I, Kagamimori S, Sokejima S, Yamagami T, Liu Z, Qi B. Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men. Amino Acids. 2004;26(2):203–207. doi: 10.1007/s00726-003-0002-3. [PubMed] [CrossRef] [Google Scholar]

635. Zembron-Lacny A, Szyszka K, Szygula Z. Effect of cysteine derivatives administration in healthy men exposed to intense resistance exercise by evaluation of pro-antioxidant ratio. J Physiol Sci. 2007;57(6):343–348. doi: 10.2170/physiolsci.RP009307. [PubMed] [CrossRef] [Google Scholar]

636. Paddon-Jones D, Borsheim E, Wolfe RR. Potential ergogenic effects of arginine and creatine supplementation. J Nutr. 2004;134(10 Suppl):2888S–2894S. doi: 10.1093/jn/134.10.2888S. [PubMed] [CrossRef] [Google Scholar]

637. Greer BK, Jones BT. Acute arginine supplementation fails to improve muscle endurance or affect blood pressure responses to resistance training. J Strength Cond Res. 2011;25(7):1789–1794. doi: 10.1519/JSC.0b013e3181e07569. [PubMed] [CrossRef] [Google Scholar]

638. Aguiar AF, Balvedi MC, Buzzachera CF, Altimari LR, Lozovoy MA, Bigliassi M, Januario RS, Pereira RM, Sanches VC, Da Silva DK, Muraoka GA. L-arginine supplementation does not enhance blood flow and muscle performance in healthy and physically active older women. Eur J Nutr. 2016;55(6):2053–2062. doi: 10.1007/s00394-015-1019-6. [PubMed] [CrossRef] [Google Scholar]

639. Sunderland KL, Greer F, Morales J. Vo2max and ventilatory threshold of trained cyclists are not affected by 28-day l-arginine supplementation. J Strength Cond Res. 2011;25(3):833–837. doi: 10.1519/JSC.0b013e3181c6a14d. [PubMed] [CrossRef] [Google Scholar]

640. Wax B, Kavazis AN, Webb HE, Brown SP. Acute l-arginine alpha ketoglutarate supplementation fails to improve muscular performance in resistance trained and untrained men. J Int Soc Sports Nutr. 2012;9(1):17. doi: 10.1186/1550-2783-9-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

641. Liu TH, Wu CL, Chiang CW, Lo YW, Tseng HF, Chang CK. No effect of short-term arginine supplementation on nitric oxide production, metabolism and performance in intermittent exercise in athletes. J Nutr Biochem. 2009;20(6):462–468. doi: 10.1016/j.jnutbio.2008.05.005. [PubMed] [CrossRef] [Google Scholar]

642. Olek RA, Ziemann E, Grzywacz T, Kujach S, Luszczyk M, Antosiewicz J, Laskowski R. A single oral intake of arginine does not affect performance during repeated Wingate anaerobic test. J Sports Med Phys Fitness. 2010;50(1):52–56. [PubMed] [Google Scholar]

643. Sandbakk SB, Sandbakk O, Peacock O, James P, Welde B, Stokes K, Bohlke N, Tjonna AE. Effects of acute supplementation of l-arginine and nitrate on endurance and sprint performance in elite athletes. Nitric Oxide. 2015;48:10–15. doi: 10.1016/j.niox.2014.10.006. [PubMed] [CrossRef] [Google Scholar]

644. Alvares TS, Conte-Junior CA, Silva JT, Paschoalin VM. L-arginine does not improve biochemical and hormonal response in trained runners after 4 weeks of supplementation. Nutr Res. 2014;34(1):31–39. doi: 10.1016/j.nutres.2013.10.006. [PubMed] [CrossRef] [Google Scholar]

645. Bailey SJ, Winyard PG, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, Jones AM. Acute l-arginine supplementation reduces the o2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance. J Appl Physiol. 2010;109(5):1394–1403. doi: 10.1152/japplphysiol.00503.2010. [PubMed] [CrossRef] [Google Scholar]

646. Pahlavani N, Entezari MH, Nasiri M, Miri A, Rezaie M, Bagheri-Bidakhavidi M, Sadeghi O. The effect of l-arginine supplementation on body composition and performance in male athletes: a double-blinded randomized clinical trial. Eur J Clin Nutr. 2017;71(8):1028. doi: 10.1038/ejcn.2017.80. [PubMed] [CrossRef] [Google Scholar]

647. Barnett C, Costill DL, Vukovich MD, Cole KJ, Goodpaster BH, Trappe SW, Fink WJ. Effect of l-carnitine supplementation on muscle and blood carnitine content and lactate accumulation during high-intensity sprint cycling. Int J Sport Nutr. 1994;4(3):280–288. doi: 10.1123/ijsn.4.3.280. [PubMed] [CrossRef] [Google Scholar]

648. Novakova K, Kummer O, Bouitbir J, Stoffel SD, Hoerler-Koerner U, Bodmer M, Roberts P, Urwyler A, Ehrsam R, Krahenbuhl S. Effect of l-carnitine supplementation on the body carnitine pool, skeletal muscle energy metabolism and physical performance in male vegetarians. Eur J Nutr. 2016;55(1):207–217. doi: 10.1007/s00394-015-0838-9. [PubMed] [CrossRef] [Google Scholar]

649. Smith WA, Fry AC, Tschume LC, Bloomer RJ. Effect of glycine propionyl-l-carnitine on aerobic and anaerobic exercise performance. Int J Sport Nutr Exerc Metab. 2008;18(1):19–36. doi: 10.1123/ijsnem.18.1.19. [PubMed] [CrossRef] [Google Scholar]

650. Faria Coelho C, Mota J, Paula Ravagnan F, Burini R. The supplementation of l-carnitine does not promote alterations in the resting metabolic rate and in the use of energetic substrates in physically active individuals. Arg Bras Endocrinol Metabol. 2010;54:37–44. doi: 10.1590/S0004-27302010000100007. [PubMed] [CrossRef] [Google Scholar]

651. Villani RG, Gannon J, Self M, Rich PA. L-carnitine supplementation combined with aerobic training does not promote weight loss in moderately obese women. Int J Sport Nutr Exerc Metab. 2000;10(2):199–207. doi: 10.1123/ijsnem.10.2.199. [PubMed] [CrossRef] [Google Scholar]

652. Trappe SW, Costill DL, Goodpaster B, Vukovich MD, Fink WJ. The effects of l-carnitine supplementation on performance during interval swimming. Int J Sports Med. 1994;15(4):181–185. doi: 10.1055/s-2007-1021044. [PubMed] [CrossRef] [Google Scholar]

653. Colombani P, Wenk C, Kunz I, Krahenbuhl S, Kuhnt M, Arnold M, Frey-Rindova P, Frey W, Langhans W. Effects of l-carnitine supplementation on physical performance and energy metabolism of endurance-trained athletes: a double-blind crossover field study. Eur J Appl Physiol Occup Physiol. 1996;73(5):434–439. doi: 10.1007/BF00334420. [PubMed] [CrossRef] [Google Scholar]

654. Derosa G, Cicero AF, Gaddi A, Mugellini A, Ciccarelli L, Fogari R. The effect of l-carnitine on plasma lipoprotein(a) levels in hypercholesterolemic patients with type 2 diabetes mellitus. Clin Ther. 2003;25(5):1429–1439. doi: 10.1016/S0149-2918(03)80130-3. [PubMed] [CrossRef] [Google Scholar]

655. Elmslie JL, Porter RJ, Joyce PR, Hunt PJ, Mann JI. Carnitine does not improve weight loss outcomes in valproate-treated bipolar patients consuming an energy-restricted, low-fat diet. Bipolar Disord. 2006;8(5 Pt 1):503–507. doi: 10.1111/j.1399-5618.2006.00345.x. [PubMed] [CrossRef] [Google Scholar]

656. Rafraf M, Karimi M, Rashidi M, Jafari A. Effect of l-carnitine supplementation in comparison with moderate aerobic training on insulin resistance and anthropometric indices in obese women. Sci J Zanjan Univ Med Univ. 2012;20:17–30. [Google Scholar]

657. Brass EP. Supplemental carnitine and exercise. Am J Clin Nutr. 2000;72(2 Suppl):618S–623S. doi: 10.1093/ajcn/72.2.618S. [PubMed] [CrossRef] [Google Scholar]

658. Burrus BM, Moscicki BM, Matthews TD, Paolone VJ. The effect of acute l-carnitine and carbohydrate intake on cycling performance. Int J Exerc Sci. 2018;11(2):404–416. [PMC free article] [PubMed] [Google Scholar]

659. Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL. Insulin stimulates l-carnitine accumulation in human skeletal muscle. FASEB J. 2006;20(2):377–379. doi: 10.1096/fj.05-4985fje. [PubMed] [CrossRef] [Google Scholar]

660. Stephens FB, Evans CE, Constantin-Teodosiu D, Greenhaff PL. Carbohydrate ingestion augments l-carnitine retention in humans. J Appl Physiol. 2007;102(3):1065–1070. doi: 10.1152/japplphysiol.01011.2006. [PubMed] [CrossRef] [Google Scholar]

661. Wall BT, Stephens FB, Constantin-Teodosiu D, Marimuthu K, Macdonald IA, Greenhaff PL. Chronic oral ingestion of l-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. J Physiol. 2011;589(Pt 4):963–973. doi: 10.1113/jphysiol.2010.201343. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

662. Street B, Byrne C, Eston R. Glutamine supplementation in recovery from eccentric exercise attenuates strength loss and muscle soreness. J Exerc Sci Fit. 2011;9(2):116–122. doi: 10.1016/S1728-869X(12)60007-0. [CrossRef] [Google Scholar]

663. Hargreaves M, Mckenna MJ, Jenkins DG, Warmington SA, Li JL, Snow RJ, Febbraio MA. Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol. 1998;84(5):1687–1691. doi: 10.1152/jappl.1998.84.5.1687. [PubMed] [CrossRef] [Google Scholar]

664. Starling RD, Trappe TA, Short KR, Sheffield-Moore M, Jozsi AC, Fink WJ, Costill DL. Effect of inosine supplementation on aerobic and anaerobic cycling performance. Med Sci Sports Exerc. 1996;28(9):1193–1198. doi: 10.1097/00005768-199609000-00017. [PubMed] [CrossRef] [Google Scholar]

665. Williams MH, Kreider RB, Hunter DW, Somma CT, Shall LM, Woodhouse ML, Rokitski L. Effect of inosine supplementation on 3-mile treadmill run performance and vo2 peak. Med Sci Sports Exerc. 1990;22(4):517–522. doi: 10.1249/00005768-199008000-00017. [PubMed] [CrossRef] [Google Scholar]

666. Mcnaughton L, Dalton B, Tarr J. Inosine supplementation has no effect on aerobic or anaerobic cycling performance. Int J Sport Nutr. 1999;9(4):333–344. doi: 10.1123/ijsn.9.4.333. [PubMed] [CrossRef] [Google Scholar]

667. Jeukendrup AE, Thielen JJ, Wagenmakers AJ, Brouns F, Saris WH. Effect of medium-chain triacylglycerol and carbohydrate ingestion during exercise on substrate utilization and subsequent cycling performance. Am J Clin Nutr. 1998;67(3):397–404. doi: 10.1093/ajcn/67.3.397. [PubMed] [CrossRef] [Google Scholar]

668. Goedecke JH, Elmer-English R, Dennis SC, Schloss I, Noakes TD, Lambert EV. Effects of medium-chain triaclyglycerol ingested with carbohydrate on metabolism and exercise performance. Int J Sport Nutr. 1999;9(1):35–47. doi: 10.1123/ijsn.9.1.35. [PubMed] [CrossRef] [Google Scholar]

669. Calabrese C, Myer S, Munson S, Turet P, Birdsall TC. A cross-over study of the effect of a single oral feeding of medium chain triglyceride oil vs. canola oil on post-ingestion plasma triglyceride levels in healthy men. Altern Med Rev. 1999;4(1):23–28. [PubMed] [Google Scholar]

670. Angus DJ, Hargreaves M, Dancey J, Febbraio MA. Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. J Appl Physiol. 2000;88(1):113–119. doi: 10.1152/jappl.2000.88.1.113. [PubMed] [CrossRef] [Google Scholar]

671. Van Zyl CG, Lambert EV, Hawley JA, Noakes TD, Dennis SC. Effects of medium-chain triglyceride ingestion on fuel metabolism and cycling performance. J Appl Physiol. 1996;80(6):2217–2225. doi: 10.1152/jappl.1996.80.6.2217. [PubMed] [CrossRef] [Google Scholar]

672. Misell LM, Lagomarcino ND, Schuster V, Kern M. Chronic medium-chain triacylglycerol consumption and endurance performance in trained runners. J Sports Med Phys Fitness. 2001;41(2):210–215. [PubMed] [Google Scholar]

673. Vistisen B, Nybo L, Xu X, Hoy CE, Kiens B. Minor amounts of plasma medium-chain fatty acids and no improved time trial performance after consuming lipids. J Appl Physiol. 2003;95(6):2434–2443. doi: 10.1152/japplphysiol.00118.2003. [PubMed] [CrossRef] [Google Scholar]

674. Goedecke JH, Clark VR, Noakes TD, Lambert EV. The effects of medium-chain triacylglycerol and carbohydrate ingestion on ultra-endurance exercise performance. Int J Sport Nutr Exerc Metab. 2005;15(1):15–27. doi: 10.1123/ijsnem.15.1.15. [PubMed] [CrossRef] [Google Scholar]

675. Burke LM, Kiens B, Ivy JL. Carbohydrates and fat for training and recovery. J Sports Sci. 2004;22(1):15–30. doi: 10.1080/0264041031000140527. [PubMed] [CrossRef] [Google Scholar]

676. Thorburn MS, Vistisen B, Thorp RM, Rockell MJ, Jeukendrup AE, Xu X, Rowlands DS. Attenuated gastric distress but no benefit to performance with adaptation to octanoate-rich esterified oils in well-trained male cyclists. J Appl Physiol. 2006;101(6):1733–1743. doi: 10.1152/japplphysiol.00393.2006. [PubMed] [CrossRef] [Google Scholar]

677. Tullson PC, Terjung RL. Adenine nucleotide synthesis in exercising and endurance-trained skeletal muscle. Am J Phys. 1991;261(2 Pt 1):C342–C347. doi: 10.1152/ajpcell.1991.261.2.C342. [PubMed] [CrossRef] [Google Scholar]

678. Gross M, Kormann B, Zollner N. Ribose administration during exercise: effects on substrates and products of energy metabolism in healthy subjects and a patient with myoadenylate deaminase deficiency. Klin Wochenschr. 1991;69(4):151–155. doi: 10.1007/BF01665856. [PubMed] [CrossRef] [Google Scholar]

679. Wagner DR, Gresser U, Kamilli I, Gross M, Zollner N. Effects of oral ribose on muscle metabolism during bicycle ergometer in patients with amp-deaminase-deficiency. Adv Exp Med Biol. 1991;309B:383–385. doi: 10.1007/978-1-4615-7703-4_87. [PubMed] [CrossRef] [Google Scholar]

680. Pliml W, Von Arnim T, Stablein A, Hofmann H, Zimmer HG, Erdmann E. Effects of ribose on exercise-induced ischaemia in stable coronary artery disease. Lancet. 1992;340(8818):507–510. doi: 10.1016/0140-6736(92)91709-H. [PubMed] [CrossRef] [Google Scholar]

681. Pauly DF, Pepine CJ. D-ribose as a supplement for cardiac energy metabolism. J Cardiovasc Pharmacol Ther. 2000;5(4):249–258. doi: 10.1054/JCPT.2000.18011. [PubMed] [CrossRef] [Google Scholar]

682. Eijnde BO'T, Van Leemputte M, Brouns F, Van Der Vusse GJ, Labarque V, Ramaekers M, Van Schuylenberg R, Verbessem P, Wijnen H, Hespel P. No effects of oral ribose supplementation on repeated maximal exercise and de novo atp resynthesis. J Appl Physiol. 2001;91(5):2275–2281. doi: 10.1152/jappl.2001.91.5.2275. [PubMed] [CrossRef] [Google Scholar]

683. Berardi JM, Ziegenfuss TN. Effects of ribose supplementation on repeated sprint performance in men. J Strength Cond Res. 2003;17(1):47–52. [PubMed] [Google Scholar]

684. Kreider RB, Melton C, Greenwood M, Rasmussen C, Lundberg J, Earnest C, Almada A. Effects of oral d-ribose supplementation on anaerobic capacity and selected metabolic markers in healthy males. Int J Sport Nutr Exerc Metab. 2003;13(1):76–86. doi: 10.1123/ijsnem.13.1.76. [PubMed] [CrossRef] [Google Scholar]

685. Dunne L, Worley S, Macknin M. Ribose versus dextrose supplementation, association with rowing performance: a double-blind study. Clin J Sport Med. 2006;16(1):68–71. doi: 10.1097/01.jsm.0000180022.44889.94. [PubMed] [CrossRef] [Google Scholar]

686. Kerksick C, Rasmussen C, Bowden R, Leutholtz B, Harvey T, Earnest C, Greenwood M, Almada A, Kreider R. Effects of ribose supplementation prior to and during intense exercise on anaerobic capacity and metabolic markers. Int J Sport Nutr Exerc Metab. 2005;15(6):653–664. doi: 10.1123/ijsnem.15.6.653. [PubMed] [CrossRef] [Google Scholar]

687. Seifert JG, Brumet A, St Cyr JA. The influence of d-ribose ingestion and fitness level on performance and recovery. J Int Soc Sports Nutr. 2017;14:47. doi: 10.1186/s12970-017-0205-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

688. Fletcher RH, Fairfield KM. Vitamins for chronic disease prevention in adults: clinical applications. JAMA. 2002;287(23):3127–3129. doi: 10.1001/jama.287.23.3127. [PubMed] [CrossRef] [Google Scholar]

689. Fairfield KM, Fletcher RH. Vitamins for chronic disease prevention in adults: scientific review. JAMA. 2002;287(23):3116–3126. doi: 10.1001/jama.287.23.3116. [PubMed] [CrossRef] [Google Scholar]

690. Krzywanski J, Mikulski T, Krysztofiak H, Mlynczak M, Gaczynska E, Ziemba A. Seasonal vitamin d status in polish elite athletes in relation to sun exposure and oral supplementation. PLoS One. 2016;11(10):e0164395. doi: 10.1371/journal.pone.0164395. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

691. Close GL, Hamilton DL, Philp A, Burke LM, Morton JP. New strategies in sport nutrition to increase exercise performance. Free Radic Biol Med. 2016;98:144–158. doi: 10.1016/j.freeradbiomed.2016.01.016. [PubMed] [CrossRef] [Google Scholar]

692. Braham R, Dawson B, Goodman C. The effect of glucosamine supplementation on people experiencing regular knee pain. Br J Sports Med. 2003;37(1):45–49. doi: 10.1136/bjsm.37.1.45. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

693. Vad V, Hong HM, Zazzali M, Agi N, Basrai D. Exercise recommendations in athletes with early osteoarthritis of the knee. Sports Med. 2002;32(11):729–739. doi: 10.2165/00007256-200232110-00004. [PubMed] [CrossRef] [Google Scholar]

694. Lugo JP, Saiyed ZM, Lane NE. Efficacy and tolerability of an undenatured type ii collagen supplement in modulating knee osteoarthritis symptoms: a multicenter randomized, double-blind, placebo-controlled study. Nutr J. 2016;15:14. doi: 10.1186/s12937-016-0130-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

695. Lugo JP, Saiyed ZM, Lau FC, Molina JP, Pakdaman MN, Shamie AN, Udani JK. Undenatured type ii collagen (uc-ii(r)) for joint support: a randomized, double-blind, placebo-controlled study in healthy volunteers. J Int Soc Sports Nutr. 2013;10(1):48. doi: 10.1186/1550-2783-10-48. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

696. Nieman DC. Exercise immunology: nutritional countermeasures. Can J Appl Physiol. 2001;26(Suppl):S45–S55. doi: 10.1139/h2001-041. [PubMed] [CrossRef] [Google Scholar]

697. Gleeson M, Lancaster GI, Bishop NC. Nutritional strategies to minimise exercise-induced immunosuppression in athletes. Can J Appl Physiol. 2001;26(Suppl):S23–S35. doi: 10.1139/h2001-039. [PubMed] [CrossRef] [Google Scholar]

698. Gleeson M, Bishop NC. Elite athlete immunology: importance of nutrition. Int J Sports Med. 2000;21(Suppl 1):S44–S50. doi: 10.1055/s-2000-1451. [PubMed] [CrossRef] [Google Scholar]

699. Gleeson M. Nutritional support to maintain proper immune status during intense training. Nestle Nutr Inst Workshop Ser. 2013;75:85–97. doi: 10.1159/000345822. [PubMed] [CrossRef] [Google Scholar]

700. Lowery L, Berardi JM, Ziegenfuss T. Antioxidants. In: Antonio J, Stout J, editors. Sports supplements. Baltimore: Lippincott, Williams & Wilkins; 2001. pp. 260–278. [Google Scholar]

701. Kris-Etherton PM, Harris WS, Appel LJ, American Heart Association. Nutrition C Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106(21):2747–2757. doi: 10.1161/01.CIR.0000038493.65177.94. [PubMed] [CrossRef] [Google Scholar]

702. Hill AM, Buckley JD, Murphy KJ, Howe PR. Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors. Am J Clin Nutr. 2007;85(5):1267–1274. doi: 10.1093/ajcn/85.5.1267. [PubMed] [CrossRef] [Google Scholar]

703. Nieman DC. Risk of upper respiratory tract infection in athletes: an epidemiologic and immunologic perspective. J Athl Train. 1997;32(4):344–349. [PMC free article] [PubMed] [Google Scholar]

704. Talbott S, Talbott J. Effect of beta 1, 3/1, 6 glucan on upper respiratory tract infection symptoms and mood state in marathon athletes. J Sports Sci Med. 2009;8(4):509–515. [PMC free article] [PubMed] [Google Scholar]

705. Cox AJ, Pyne DB, Saunders PU, Fricker PA. Oral administration of the probiotic lactobacillus fermentum vri-003 and mucosal immunity in endurance athletes. Br J Sports Med. 2010;44(4):222–226. doi: 10.1136/bjsm.2007.044628. [PubMed] [CrossRef] [Google Scholar]

706. Gleeson M, Bishop NC, Oliveira M, Mccauley T, Tauler P, Lawrence C. Effects of a lactobacillus salivarius probiotic intervention on infection, cold symptom duration and severity, and mucosal immunity in endurance athletes. Int J Sport Nutr Exerc Metab. 2012;22(4):235–242. doi: 10.1123/ijsnem.22.4.235. [PubMed] [CrossRef] [Google Scholar]

707. Reid IR. Therapy of osteoporosis: calcium, vitamin d, and exercise. Am J Med Sci. 1996;312(6):278–286. doi: 10.1097/00000441-199612000-00006. [PubMed] [CrossRef] [Google Scholar]

708. Goldfarb AH. Antioxidants: role of supplementation to prevent exercise-induced oxidative stress. Med Sci Sports Exerc. 1993;25(2):232–236. doi: 10.1249/00005768-199302000-00012. [PubMed] [CrossRef] [Google Scholar]

709. Goldfarb AH. Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage. Can J Appl Physiol. 1999;24(3):249–266. doi: 10.1139/h99-021. [PubMed] [CrossRef] [Google Scholar]

710. Appell HJ, Duarte JA, Soares JM. Supplementation of vitamin e may attenuate skeletal muscle immobilization atrophy. Int J Sports Med. 1997;18(3):157–160. doi: 10.1055/s-2007-972612. [PubMed] [CrossRef] [Google Scholar]

711. Tiidus PM, Houston ME. Vitamin e status and response to exercise training. Sports Med. 1995;20(1):12–23. doi: 10.2165/00007256-199520010-00002. [PubMed] [CrossRef] [Google Scholar]

712. Craciun AM, Wolf J, Knapen MH, Brouns F, Vermeer C. Improved bone metabolism in female elite athletes after vitamin k supplementation. Int J Sports Med. 1998;19(7):479–484. doi: 10.1055/s-2007-971948. [PubMed] [CrossRef] [Google Scholar]

713. Fogelholm M, Ruokonen I, Laakso JT, Vuorimaa T, Himberg JJ. Lack of association between indices of vitamin b1, b2, and b6 status and exercise-induced blood lactate in young adults. Int J Sport Nutr. 1993;3(2):165–176. doi: 10.1123/ijsn.3.2.165. [PubMed] [CrossRef] [Google Scholar]

714. Garg R, Malinow M, Pettinger M, Upson B, Hunninghake D. Niacin treatment increases plasma homocyst(e)ine levels. Am Heart J. 1999;138(6 Pt 1):1082–1087. doi: 10.1016/S0002-8703(99)70073-6. [PubMed] [CrossRef] [Google Scholar]

715. Alaswad K, O'keefe JH, Jr, Moe RM. Combination drug therapy for dyslipidemia. Curr Atheroscler Rep. 1999;1(1):44–49. doi: 10.1007/s11883-999-0049-z. [PubMed] [CrossRef] [Google Scholar]

716. Murray R, Bartoli WP, Eddy DE, Horn MK. Physiological and performance responses to nicotinic-acid ingestion during exercise. Med Sci Sports Exerc. 1995;27(7):1057–1062. doi: 10.1249/00005768-199507000-00015. [PubMed] [CrossRef] [Google Scholar]

717. Bonke D. Influence of vitamin b1, b6, and b12 on the control of fine motoric movements. Bibl Nutr Dieta. 1986;38:104–109. [PubMed] [Google Scholar]

718. Bonke D, Nickel B. Improvement of fine motoric movement control by elevated dosages of vitamin b1, b6, and b12 in target shooting. Int J Vitam Nutr Res Suppl. 1989;30:198–204. [PubMed] [Google Scholar]

719. Van Dyke DC, Stumbo PJ, Mary JB, Niebyl JR. Folic acid and prevention of birth defects. Dev Med Child Neurol. 2002;44(6):426–429. doi: 10.1111/j.1469-8749.2002.tb00838.x. [PubMed] [CrossRef] [Google Scholar]

720. Mattson MP, Kruman II, Duan W. Folic acid and homocysteine in age-related disease. Ageing Res Rev. 2002;1(1):95–111. doi: 10.1016/S0047-6374(01)00365-7. [PubMed] [CrossRef] [Google Scholar]

721. Weston PM, King RF, Goode AW, Williams NS. Diet-induced thermogenesis in patients with gastrointestinal cancer cachexia. Clin Sci (Lond) 1989;77(2):133–138. doi: 10.1042/cs0770133. [PubMed] [CrossRef] [Google Scholar]

722. Webster MJ. Physiological and performance responses to supplementation with thiamin and pantothenic acid derivatives. Eur J Appl Physiol Occup Physiol. 1998;77(6):486–491. doi: 10.1007/s004210050364. [PubMed] [CrossRef] [Google Scholar]

723. Van Der Beek EJ, Lowik MR, Hulshof KF, Kistemaker C. Combinations of low thiamin, riboflavin, vitamin b6 and vitamin c intake among dutch adults. (dutch nutrition surveillance system) J Am Coll Nutr. 1994;13(4):383–391. doi: 10.1080/07315724.1994.10718426. [PubMed] [CrossRef] [Google Scholar]

724. Pedersen BK, Bruunsgaard H, Jensen M, Toft AD, Hansen H, Ostrowski K. Exercise and the immune system--influence of nutrition and ageing. J Sci Med Sport. 1999;2(3):234–252. doi: 10.1016/S1440-2440(99)80176-5. [PubMed] [CrossRef] [Google Scholar]

725. Petersen EW, Ostrowski K, Ibfelt T, Richelle M, Offord E, Halkjaer-Kristensen J, Pedersen BK. Effect of vitamin supplementation on cytokine response and on muscle damage after strenuous exercise. Am J Physiol Cell Physiol. 2001;280(6):C1570–C1575. doi: 10.1152/ajpcell.2001.280.6.C1570. [PubMed] [CrossRef] [Google Scholar]

726. Grados F, Brazier M, Kamel S, Duver S, Heurtebize N, Maamer M, Mathieu M, Garabedian M, Sebert JL, Fardellone P. Effects on bone mineral density of calcium and vitamin d supplementation in elderly women with vitamin d deficiency. Joint Bone Spine. 2003;70(3):203–208. doi: 10.1016/S1297-319X(03)00046-0. [PubMed] [CrossRef] [Google Scholar]

727. Zemel MB. Role of dietary calcium and dairy products in modulating adiposity. Lipids. 2003;38(2):139–146. doi: 10.1007/s11745-003-1044-6. [PubMed] [CrossRef] [Google Scholar]

728. Zemel MB. Mechanisms of dairy modulation of adiposity. J Nutr. 2003;133(1):252S–256S. doi: 10.1093/jn/133.1.252S. [PubMed] [CrossRef] [Google Scholar]

729. Brutsaert TD, Hernandez-Cordero S, Rivera J, Viola T, Hughes G, Haas JD. Iron supplementation improves progressive fatigue resistance during dynamic knee extensor exercise in iron-depleted, nonanemic women. Am J Clin Nutr. 2003;77(2):441–448. doi: 10.1093/ajcn/77.2.441. [PubMed] [CrossRef] [Google Scholar]

730. Bohl CH, Volpe SL. Magnesium and exercise. Crit Rev Food Sci Nutr. 2002;42(6):533–563. doi: 10.1080/20024091054247. [PubMed] [CrossRef] [Google Scholar]

731. Lukaski HC. Magnesium, zinc, and chromium nutrition and athletic performance. Can J Appl Physiol. 2001;26(Suppl):S13–S22. doi: 10.1139/h2001-038. [PubMed] [CrossRef] [Google Scholar]

732. Morton DP, Callister R. Characteristics and etiology of exercise-related transient abdominal pain. Med Sci Sports Exerc. 2000;32(2):432–438. doi: 10.1097/00005768-200002000-00026. [PubMed] [CrossRef] [Google Scholar]

733. Noakes TD. Fluid and electrolyte disturbances in heat illness. Int J Sports Med. 1998;19(Suppl 2):S146–S149. doi: 10.1055/s-2007-971982. [PubMed] [CrossRef] [Google Scholar]

734. Margaritis I, Tessier F, Prou E, Marconnet P, Marini JF. Effects of endurance training on skeletal muscle oxidative capacities with and without selenium supplementation. J Trace Elem Med Biol. 1997;11(1):37–43. doi: 10.1016/S0946-672X(97)80008-9. [PubMed] [CrossRef] [Google Scholar]

735. Tessier F, Margaritis I, Richard MJ, Moynot C, Marconnet P. Selenium and training effects on the glutathione system and aerobic performance. Med Sci Sports Exerc. 1995;27(3):390–396. doi: 10.1249/00005768-199503000-00015. [PubMed] [CrossRef] [Google Scholar]

736. Mccutcheon LJ, Geor RJ. Sweating. Fluid and ion losses and replacement. Vet Clin North Am Equine Pract. 1998;14(1):75–95. doi: 10.1016/S0749-0739(17)30213-4. [PubMed] [CrossRef] [Google Scholar]

737. Gibson RS, Heath AL, Ferguson EL. Risk of suboptimal iron and zinc nutriture among adolescent girls in Australia and New Zealand: causes, consequences, and solutions. Asia Pac J Clin Nutr. 2002;11(Suppl 3):S543–S552. doi: 10.1046/j.1440-6047.11.supp3.10.x. [PubMed] [CrossRef] [Google Scholar]

738. Singh A, Failla ML, Deuster PA. Exercise-induced changes in immune function: effects of zinc supplementation. J Appl Physiol. 1994;76(6):2298–2303. doi: 10.1152/jappl.1994.76.6.2298. [PubMed] [CrossRef] [Google Scholar]

What instructions should a medical assistant give a patient undergoing pulmonary function tests?

To prepare for your pulmonary function test, follow these instructions:.
No bronchodilator medication for four hours..
No smoking for four hours before the test..
No heavy meals..
Do not wear any tight clothing..
The complete pulmonary function test takes around one and a half hours..

Which of the following procedures involves the process of cleaning out the contents of the stomach through a nasogastric tube?

Gastric suction, or stomach pumping, is a procedure your doctor can perform to empty the contents of your stomach quickly during an emergency. It's also known as gastric lavage and nasogastric tube suction.

Which of the following conditions describes inflammation and or infection of the sinus cavity?

Sinusitis is an inflammation of the sinuses that can cause them to get blocked and filled with fluid. It is usually caused by cold or allergies.

Which of the following respiratory disorders is manifested by inflammation swelling and constriction of the bronchioles and bronchi?

Asthma is marked by inflammation of the bronchial tubes, with extra sticky secretions inside the tubes. People with asthma have symptoms when the airways tighten, inflame, or fill with mucus. There are three major signs of asthma: Airway blockage.