Development such as that depicted in the image most directly lead to which of the following

References

  1. Schubert, E. F. Light-Emitting Diodes 2nd edn (Cambridge Univ. Press, 2006).

  2. Nakamura, S., Harada, Y. & Seno, M. Novel metalorganic chemical vapor deposition system for GaN growth. Appl. Phys. Lett. 58, 2021–2023 (1991).

    Article  Google Scholar 

  3. Amano, H., Kito, M., Hiramatsu, K. & Akasaki, I. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn J. Appl. Phys. 28, 2112–2114 (1989).

    Article  Google Scholar 

  4. Nakamura, S., Mukai, T., Senoh, M. & Iwasa, N. Thermal annealing effects on p-type Mg-doped GaN films. Jpn J. Appl. Phys. 31, L139–L142 (1992).

    Article  Google Scholar 

  5. Nakamura, S., Senoh, M., Iwasa, N. & Nagahama, S. I. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn J. Appl. Phys. 34, L797–L799 (1995).

    Article  Google Scholar 

  6. Virey, E. & Bouhamri, Z. MicroLED Displays—Market, Industry and Technology Trends 2021 Report Technical Report (Yole Developpement, 2021).

  7. Zhang, L., Ou, F., Chong, W. C., Chen, Y. & Li, Q. Wafer-scale monolithic hybrid integration of Si-based IC and III–V epi-layers—a mass manufacturable approach for active matrix micro-LED micro-displays: active matrix micro-LED micro displays made with monolithic hybrid integration. J. Soc. Inf. Disp. 26, 137–145 (2018).

    Article  Google Scholar 

  8. Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801–6827 (2013).

    Article  Google Scholar 

  9. Tian, P. et al. Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5 kA cm2. Semiconductor Sci. Technol. 31, 045005 (2016).

    Article  Google Scholar 

  10. Pezeshki, B., Tselikov, A., Danesh, C. & Kalman, R. 8x 2Gb/s LED-based optical link at 420nm for chip-to-chip applications. In 2021 European Conference on Optical Communication (ECOC) 1–3 (IEEE, 2021).

  11. Olivier, F. et al. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin. 191, 112–116 (2017).

    Article  Google Scholar 

  12. Templier, F. et al. GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems. SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).

    Article  Google Scholar 

  13. Chen, H. W., Lee, J. H., Lin, B. Y., Chen, S. & Wu, S. T. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 7, 17168 (2018).

    Article  Google Scholar 

  14. Huang, Y., Hsiang, E. L., Deng, M. Y. & Wu, S. T. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9, 105 (2020).

    Article  Google Scholar 

  15. Chen, H., Tan, G. & Wu, S. T. Ambient contrast ratio of LCDs and OLED displays. Opt. Express 25, 33643 (2017).

    Article  Google Scholar 

  16. Huang, Y. et al. Prospects and challenges of mini-LED and micro-LED displays. J. Soc. Inf. Disp. 27, 387–401 (2019).

    Article  Google Scholar 

  17. Bulashevich, K. A. & Karpov, S. Y. Impact of surface recombination on efficiency of III-nitride light-emitting diodes. Phys. Status Solidi 10, 480–484 (2016).

    Google Scholar 

  18. Wong, M. S. et al. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments. Opt. Express 28, 5787 (2020).

    Article  Google Scholar 

  19. Behrman, K. & Kymissis, I. Enhanced microLED efficiency via strategic pGaN contact geometries. Opt. Express 29, 14841–14852 (2021).

  20. Boroditsky, M. et al. Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes. J. Appl. Phys. 87, 3497–3504 (2000).

    Article  Google Scholar 

  21. Wong, M. S. et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt. Express 26, 21324 (2018).

    Article  Google Scholar 

  22. Weisbuch, C. Review—on the search for efficient solid state light emitters: past, present, future. ECS J. Solid State Sci. Technol. 9, 016022 (2020).

    Article  Google Scholar 

  23. Iida, D. et al. 633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress. Appl. Phys. Lett. 116, 162101 (2020).

    Article  Google Scholar 

  24. Auf der Maur, M., Pecchia, A., Penazzi, G., Rodrigues, W. & Di Carlo, A. Efficiency drop in green InGaN/GaN light emitting diodes: the role of random alloy fluctuations. Phys. Rev. Lett. 116, 027401 (2016).

    Article  Google Scholar 

  25. Cok, R. S. et al. Inorganic light-emitting diode displays using micro-transfer printing: LED displays using micro-transfer printing. J. Soc. Inf. Disp. 25, 589–609 (2017).

    Article  Google Scholar 

  26. Qian, L. et al. Key challenges towards the commercialization of quantum-dot light-emitting diodes. SID Symp. Dig. Tech. Pap. 48, 55–57 (2017).

    Article  Google Scholar 

  27. Liu, Z. et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9, 83 (2020).

    Article  Google Scholar 

  28. Jiang, H. X., Jin, S. X., Li, J., Shakya, J. & Lin, J. Y. III-nitride blue microdisplays. Appl. Phys. Lett. 78, 1303–1305 (2001).

    Article  Google Scholar 

  29. Choi, H., Jeon, C. & Dawson, M. Fabrication of matrix-addressable micro-LED arrays based on a novel etch technique. J. Cryst. Growth 268, 527–530 (2004).

    Article  Google Scholar 

  30. Chong, W. C., Cho, W. K., Liu, Z. J., Wang, C. H. & Lau, K. M. 1700 pixels per inch (ppi) passive-matrix micro-LED display powered by ASIC. In 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) 1–4 (IEEE, 2014).

  31. Kymissis, I. & Behrman, K. A brief survey of microLED technologies. SID Symp. Dig. Tech. Pap. 51, 650–652 (2020).

    Article  Google Scholar 

  32. Chung, K., Sui, J., Demory, B. & Ku, P. C. Color mixing from monolithically integrated InGaN-based light-emitting diodes by local strain engineering. Appl. Phys. Lett. 111, 041101 (2017).

    Article  Google Scholar 

  33. Li, P. et al. Monolithic full-color microdisplay using patterned quantum dot photoresist on dual-wavelength LED epilayers. J. Soc. Inf. Disp. 29, 157–165 (2021).

  34. Qi, Y., Liang, H., Tang, W., Lu, Z. & Lau, K. M. Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy. J. Cryst. Growth 272, 333–340 (2004).

    Article  Google Scholar 

  35. Furukawa, Y. et al. Monolithic implementation of elemental devices for optoelectronic integrated circuit in lattice-matched Si/III–V–N alloy layers. Jpn J. Appl. Phys. 45, L920–L922 (2006).

    Article  Google Scholar 

  36. Guha, S. & Bojarczuk, N. A. Ultraviolet and violet GaN light emitting diodes on silicon. Appl. Phys. Lett. 72, 415–417 (1998).

    Article  Google Scholar 

  37. Tran, C. A., Osinski, A., Karlicek, R. F. & Berishev, I. Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 75, 1494–1496 (1999).

    Article  Google Scholar 

  38. Guha, S. & Bojarczuk, N. A. Multicolored light emitters on silicon substrates. Appl. Phys. Lett. 73, 1487–1489 (1998).

    Article  Google Scholar 

  39. Ponce, F. A. & Bour, D. P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351–359 (1997).

    Article  Google Scholar 

  40. Zhu, D., Wallis, D. J. & Humphreys, C. J. Prospects of III-nitride optoelectronics grown on Si. Rep. Prog. Phys. 76, 106501 (2013).

    Article  Google Scholar 

  41. Sheng, J., Jeong, H. J., Han, K. L., Hong, T. & Park, J. S. Review of recent advances in flexible oxide semiconductor thin-film transistors. J. Inf. Disp. 18, 159–172 (2017).

    Article  Google Scholar 

  42. Sposili, R. S. & Im, J. S. Sequential lateral solidification of thin silicon films on SiO2. Appl. Phys. Lett. 69, 2864–2866 (1996).

    Article  Google Scholar 

  43. Tull, B. R. et al. High brightness, emissive microdisplay by integration of III–V LEDs with thin film silicon transistors. SID Symp. Dig. Tech. Pap. 46, 375–377 (2015).

    Article  Google Scholar 

  44. Li, Z. et al. Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate. Appl. Phys. Lett. 102, 192107 (2013).

    Article  Google Scholar 

  45. Gong, Z. et al. Efficient flip-chip InGaN micro-pixellated light-emitting diode arrays: promising candidates for micro-displays and colour conversion. J. Phys. D 41, 094002 (2008).

    Article  Google Scholar 

  46. Kang, C. M. et al. Hybrid full-color inorganic light-emitting diodes integrated on a single wafer using selective area growth and adhesive bonding. ACS Photon. 5, 4413–4422 (2018).

    Article  Google Scholar 

  47. Geum, D. M. et al. Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding-interface-engineered vertical stacking and surface passivation. Nanoscale 11, 23139–23148 (2019).

    Article  Google Scholar 

  48. Zhang, L. et al. Wafer scale hybrid monolithic integration of Si-based IC and III–V epilayers—a mass manufacturable approach for active matrix micro-LED displays. SID Symp. Dig. Tech. Pap. 49, 786–789 (2018).

    Article  Google Scholar 

  49. Um, J. G. et al. Active-matrix GaN u-LED display using oxide thin-film transistor backplane and flip chip LED bonding. Adv. Electron. Mater. 5, 1800617 (2019).

    Article  Google Scholar 

  50. Kim, J. C., Yi, S. & Mars, D. E. Nanostructure optoelectronic device with independently controllable junctions. US patent 8659037B2 (2014); https://patents.google.com/patent/US8659037B2/en

  51. Park, S. I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009).

    Article  Google Scholar 

  52. Meitl, M. et al. Passive matrix displays with transfer-printed microscale inorganic LEDs. SID Symp. Dig. Tech. Pap. 47, 743–746 (2016).

    Article  Google Scholar 

  53. Bibl, A., Higginson, J. A., Clara, S., Law, H. F. S. & Hu, H. H. Method of transferring a micro device. US patent 8333860B1 (2012); https://patents.google.com/patent/US8333860B1

  54. Behrman, K. et al. Early defect identification for micro light-emitting diode displays via photoluminescent and cathodoluminescent imaging. J. Soc. Inf. Disp. 29, 264–274 (2021).

    Article  Google Scholar 

  55. Henley, F. J. Evaluating in-process test compatibility of proposed mass-transfer technologies to achieve efficient, high-yield microLED mass-production. SID Symp. Dig. Tech. Pap. 50, 232–235 (2019).

    Article  Google Scholar 

  56. Bower, C. A. et al. Mass transfer throughput and yield using elastomer stamps. SID Symp. Dig. Tech. Pap. 52, 849–852 (2021).

    Article  Google Scholar 

  57. Yeh, H. J. & Smith, J. Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates. IEEE Photon. Technol. Lett. 6, 706–708 (1994).

    Article  Google Scholar 

  58. Saeedi, E., Kim, S. & Parviz, B. A. Self-assembled crystalline semiconductor optoelectronics on glass and plastic. J. Micromech. Microeng. 18, 075019 (2008).

    Article  Google Scholar 

  59. Verma, A., Hadley, M., Yeh, H. J. & Smith, J. Fluidic self-assembly of silicon microstructures. In Proc. 45th Electronic Components and Technology Conference 1263–1268 (IEEE, 1995).

  60. Rumpler, J., Perkins, J. M. & Fonstad, C. G. Jr Optoelectronic integration using statistical assembly and magnetic retention of heterostructure pills. In Conference on Lasers and Electro-Optics (IEEE, 2004); https://ieeexplore.ieee.org/document/1360716

  61. Cheng, D. I. et al. Use of patterned magnetic films to retain and orient micro-components during fluidic assembly. J. Appl. Phys. 105, 07C123 (2009).

    Article  Google Scholar 

  62. Gengel, G., Hadley, M., Pounds, T., Schatz, K. & Drzaic, P. RFID tags and processes for producing rfid tags. US patent 8350703B2 (2014); https://patents.google.com/patent/US8350703

  63. Schuele, P. J., Sasaki, K., Ulmer, K. & Lee, J. J. Display with surface mount emissive elements. US patent US9825202B2(2017); https://patents.google.com/patent/US9825202B2/en

  64. Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982).

    Article  Google Scholar 

  65. Petroff, P. M., Gossard, A. C. & Wiegmann, W. Structure of AlAs–GaAs interfaces grown on (100) vicinal surfaces by molecular beam epitaxy. Appl. Phys. Lett. 45, 620–622 (1984).

    Article  Google Scholar 

  66. Ando, S. & Fukui, T. Facet growth of AlGaAs on GaAs with SiO2 gratings by MOCVD and applications to quantum well wires. J. Cryst. Growth 98, 646–652 (1989).

    Article  Google Scholar 

  67. Hiruma, K. et al. GaAs free-standing quantum-size wires. J. Appl. Phys. 74, 3162–3171 (1993).

    Article  Google Scholar 

  68. Hiruma, K. et al. Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77, 447–462 (1995).

    Article  Google Scholar 

  69. Chen, C. C. & Yeh, C. C. Large-scale catalytic synthesis of crystalline gallium nitride nanowires. Adv. Mater. 12, 738–741 (2000).

    Article  Google Scholar 

  70. Fan, H. et al. Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications. Small 2, 561–568 (2006).

    Article  Google Scholar 

  71. Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7, 701–706 (2008).

    Article  Google Scholar 

  72. Chen, H. S. et al. Light-emitting device with regularly patterned growth of an InGaN/GaN quantum-well nanorod light-emitting diode array. Opt. Lett. 38, 3370 (2013).

    Article  Google Scholar 

  73. Tomioka, K., Kobayashi, Y., Motohisa, J., Hara, S. & Fukui, T. Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate. Nanotechnology 20, 145302 (2009).

    Article  Google Scholar 

  74. Blumberg, C. et al. Spatially controlled VLS epitaxy of gallium arsenide nanowires on gallium nitride layers. CrystEngComm 22, 1239–1250 (2020).

    Article  Google Scholar 

  75. C.-H., L. et al. GaN/ZnO nanotube heterostructure light-emitting diodes fabricated on Si. IEEE J. Sel. Top. Quantum Electron. 17, 966–970 (2011).

    Article  Google Scholar 

  76. Gardner, N. et al. Method of making a light emitting diode array on a backplane. World patent 2016100657A3 (2019); https://patents.google.com/patent/WO2016100657A3

  77. Ra, Y. H. et al. Full-color single nanowire pixels for projection displays. Nano Lett. 16, 4608–4615 (2016).

    Article  Google Scholar 

  78. Sekiguchi, H., Kishino, K. & Kikuchi, A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett. 96, 231104 (2010).

    Article  Google Scholar 

  79. Funato, M. et al. Emission color tunable light-emitting diodes composed of InGaN multifacet quantum wells. Appl. Phys. Lett. 93, 021126 (2008).

    Article  Google Scholar 

  80. Wang, R. et al. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Opt. Express 22, A1768 (2014).

    Article  Google Scholar 

  81. Wang, R. et al. Tunable, full-color nanowire light emitting diode arrays monolithically integrated on Si and sapphire. Proc. SPIE https://doi.org/10.1117/12.2213741 (2016).

  82. Hong, Y. J. et al. Visible-color-tunable light-emitting diodes. Adv. Mater. 23, 3284–3288 (2011).

    Article  Google Scholar 

  83. Daami, A. et al. Green InGaN/GaN based LEDs: high luminance and blue shift. Proc. SPIE 10918, 109180M (2019).

  84. Ozden, I. & Takeuchi, T. A matrix addressable 1024 element blue light emitting InGaN QW diode array. Phys. Status Solidi 188, 139–142 (2001).

    Article  Google Scholar 

  85. Rae, B. R. et al. CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements. J. Phys. D 41, 094011 (2008).

    Article  Google Scholar 

  86. Belton, C. R. et al. New light from hybrid inorganic-organic emitters. J. Phys. D 41, 094006 (2008).

    Article  Google Scholar 

  87. Sechrist, S. I-Zone turns seven. Inf. Disp. 34, 14–17 (2018).

    Google Scholar 

  88. Werner, K. The best of CES 2019. Inf. Disp. 35, 32–35 (2019).

    Google Scholar 

  89. Elfström, D. et al. Mask-less ultraviolet photolithography based on CMOS-driven micro-pixel light emitting diodes. Opt. Express 17, 23522 (2009).

    Article  Google Scholar 

  90. Choi, C. et al. Localizing seizure activity in the brain using implantable micro-LEDs with quantum dot downconversion. Adv. Mater. Technol. 3, 1700366 (2018).

    Article  Google Scholar 

  91. Islim, M. S. et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photon. Res. 5, A35 (2017).

    Article  Google Scholar 

  92. Chen, Y. Multi-size micro LED displays revealed by Japan and Korea tech giants. LEDinside (9 January 2020).

  93. Biwa, G. et al. Technologies for the crystal LED display system. J. Soc. Inf. Disp. 29, 435–445 (2021).

    Article  Google Scholar 

  94. Chen, Y. glō unveils RGB micro LED display with 525 ppi. LEDinside (21 January 2020).

  95. Chen, Y. Micro LED display products progress with Chinese panel makers joining the field. LEDinside (17 May 2019).

  96. Lee, V. Lumiode: ultra high brightness micro-LED displays for AR/MR. Proc. SPIE 11310, 113102S (2020).

  97. Lang, B. JBD shows micro LED display for AR/VR with absurd 3,000,000 nits brightness. Road to VR (9 January 2020).

  98. Chen, Y. AUO showcases micro LED and mini LED technologies targeting applications in post-pandemic era. LEDinside (6 August 2020).

  99. Chen, Y. Automotive and wearable micro LED displays at Display Week 2020 demonstrate mass transfer and bonding breakthroughs. LEDinside (10 September 2020).

  100. Mertens, R. TCL’s CSoT shows a 4-inch 320x180 IGZO microLED display prototype. MicroLED-Info (6 November 2020).

  101. Shih, A. Compound photonics unveils world’s smallest wide field of view 1080p optical engine reference design for smart glasses. Business Wire (16 April 2020).

  102. Lee, V. W., Twu, N. & Kymissis, I. Micro-LED technologies and applications. Inf. Disp. 32, 16–23 (2016).

    Google Scholar 

  103. Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2006).

    Article  Google Scholar 

  104. Choi, M. et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing. Adv. Funct. Mater. 27, 1–10 (2017).

    Google Scholar 

  105. Zhou, X. et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog. Quantum Electron. 71, 100263 (2020).

    Article  Google Scholar 

  106. Ra, Y. H., Rashid, R. T., Liu, X., Lee, J. & Mi, Z. Scalable nanowire photonic crystals: molding the light emission of InGaN. Adv. Funct. Mater. 27, 1702364 (2017).

    Article  Google Scholar 

  107. Lee, C. H. et al. GaN/In1−xGaxN/GaN/ZnO nanoarchitecture light emitting diode microarrays. Appl. Phys. Lett. 94, 213101 (2009).

    Article  Google Scholar 

Download references

Which of the following best explains a long term result of the development depicted in the excerpt?

Which of the following best explains a long-term result of the development depicted in the excerpt? New forms of mass media contributed to the spread of national culture.

Which of the following developments helped explain the change in agriculture depicted in the graph?

Which of the following developments helps to explain the change in agriculture depicted in the graph? The extraction of western resources led to the growth of new towns and cities that demanded agricultural goods.

Which of the following most immediately resulted from the Columbian Exchange?

The spread of disease. Possibly the most dramatic, immediate impact of the Columbian Exchange was the spread of diseases. In places where the local population had no or little resistance, especially the Americas, the effect was horrific. Prior to contact, indigenous populations thrived across North and South America.

Which of the following was the most direct result of the ideas expressed in the excerpt?

The ideas expressed in the excerpt emerged most directly from a larger intellectual debate over the: extension of slavery into newly acquired territory.