Warum muss der Gasdruck kleiner werden wenn man das Volumen eines geschlossenen Gases vergrößert?

In der Ärodynamik werden die mechanischen Eigenschaften von Gasen, insbesondere von Luft, untersucht.

Druck und Volumen¶

Ein wesentlicher Unterschied zwischen Gasen und Flüssigkeiten besteht darin, dass Gase verhältnismäßig leicht komprimierbar sind; ihr Volumen

nimmt also ab, wenn von außen ein erhöhter Druck
auf einen verformbaren Gasbehälter (beispielsweise einen Luftballon) ausgeübt wird. Lässt der Druck wieder nach, so nimmt entsprechend auch das Volumen des Gases wieder zu.

Bleibt die Temperatur des Gases während eines Kompressions- beziehungsweise Expansionsvorgangs konstant, so gilt:[1]

Wichtig: Für

und
müssen bei Verwendung dieser Formel stets absolute Druckwerte eingesetzt werden; zu einem mittels eines Manometers gemessenen Druckwert muss also stets der Luftdruck (rund
) hinzu addiert werden.

Die Volumina eines Gases verhalten sich sich also indirekt proportional zu den jeweils vorherrschenden Druckwerten. Grafisch kann dieser Zusammenhang mittels eines

-Diagramms dargestellt werden:

Das Boyle-Mariottesche Gesetz: Indirekte Proportionalität zwischen Druck und Volumen.

Die Kurve im

-Diagramm entspricht wegen
einer Hyperbel; man kann erkennen, dass das Volumen des Gases auch bei sehr hohem Druck nicht gleich Null werden kann, und umgekehrt durch eine zunehmende „Verdünnung“ der Luft ebenso immer ein Restdruck verbleibt. Mittels so genannten Vakuumpumpen, die im Gegensatz zu Kompressoren die Luft lediglich immer weiter verdünnen, kann somit kein echtes Vakuum erzeugt werden, sondern nur ein sich asymptotisch an
annähernder Druckwert.

Luftdruck und Barometrische Höhenformel¶

Gase haben – im Verhältnis zu Flüssigkeiten – eine nur sehr geringe Masse. Während ein Liter Wasser ein Kilogramm schwer ist, wiegt ein Liter Luft unter Normalbedingungen gerade einmal knapp

Gramm. Dennoch bewirkt auf unserem Planeten das Gewicht der Luft, ähnlich wie beim Schweredruck in Flüssigkeiten, einen so genannten Luftdruck, der umso größer ist, je weiter unten man sich in dem die Erde umgebenden „Luftmeer“ befindet.

Der „normale“ Luftdruck

in Bodennähe resultiert aus dem Gewicht der darüber liegenden Luftschichten. Da für
gilt, entspricht der durch die Luft ausgeübte Druck in Bodennähe rund einem Gewicht von
je Quadratmeter beziehungsweise
je Quadrat-Zentimeter.[2]

Veranschaulichung der Größe des „normalen“ Luftdrucks (1 bar).

Bei Standardbedingungen, das heißt einem Luftdruck von

und einer Temperatur von
nimmt ein Mol eines beliebigen Gases ein Volumen von
ein („Normalvolumen“). Da die Masse eines Gases in einem geschlossenen System gleich bleibt, bewirkt eine Veränderung des Gasvolumens
neben einer Veränderung des Drucks auch eine Veränderung der Gasdichte
. Es gilt:[3]

Bei einem niedrigem Gasdruck nimmt das Volumen eines Gases zu, seine Dichte hingegen ab; in höheren Luftschichten ist daher die Luft „dünner“. Für den Luftdruck

gilt in Abhängigkeit von der Höhe
die so genannte „barometrische Höhenformel“:[4]

Hierbei ist

der Luftdruck auf Meereshöhe und
eine so genannte „Skalenhöhe“, die angibt, ab wie vielen Metern der Druck auf
des ursprünglichen Werts
abfällt. Auf der Erde ist
. Die Höhe, bei welcher der Luftdruck bzw. die Luftdichte nur noch halb so groß ist, liegt damit etwa bei
.

Technisch wird der Zusammenhang zwischen Druck und Dichte beispielsweise in Vakuumpumpen genutzt, mit deren Hilfe das zu evakuierende Luftvolumen schrittweise verdünnt wird; im umgekehrten Fall kann mittels Kompressoren oder Luftpumpen das Luftvolumen kontinuierlich verkleinert werden. Das Luftvolumen kann jedoch nicht unendlich vergrößert oder verkleinert werden. Die Grenzen für elektrische Vakuumpumpen liegen daher bei etwa

; mit mehrstufigen Hochvakuum-Pumpen können Drücke von rund
) erreicht werden, mit Ultrahochvakuum-Pumpen sind sogar Drücke von
möglich.[5] Im umgekehrten Anwendungsfall kann man mit Luftpumpen bis zu
, mit Kompressoren oder guten Stand-Luftpumpen bis zu
erreichen.

Auftrieb in Gasen¶

Für die (statische) Auftriebskraft

in Gasen gilt die gleiche Formel wie für die Auftriebskraft in Flüssigkeiten:

Hierbei bezeichnet

das Volumen des Körpers,
die Erdbeschleunigung und
die Dichte des Gases. Da die Dichte von Luft
unter Normalbedingungen rund
-mal kleiner ist als die Dichte von Wasser
, können in Luft nur Körper mit einer sehr geringen (durchschnittlichen) Dichte aufsteigen. Die Steighöhe beispielsweise von Ballonen wird zudem dadurch begrenzt, dass die Dichte der Luft mit zunehmender Höhe abnimmt.

Anmerkungen:

[1] Die Gleichung (1) wird nach ihren Entdeckern Robert Boyle und Edme Mariotte „Gesetz von Boyle-Mariotte“ genannt und ist ein Sonderform der Zustandsgleichung für ideale Gase.
[2]

Nach der Zustandsgleichung für ideale Gase gilt

, wobei
die (konstante) Stoffmenge in Mol und
die allgemeine Gaskonstante ist. Die Stoffmenge
ist über die Beziehung
mit der Masse
des Gases verknüpft, wobei
die stoffspezifische molare Masse des Gases angibt. Es gilt also:

Der Term

auf der rechten Gleichungsseite gibt die Dichte des Gases an. Da
und
konstante Werte sind, gilt bei konstanter Temperatur
, also
.

[3]

Bei der Herleitung der barometrischen Höhenformel wird vom Schweredruck in Flüssigkeiten ausgegangen; für den Druckunterschied

bei einem Höhenunterschied
gilt:

Hierbei steht

für die Dichte und
für den Ortsfaktor. Das Minuszeichen ergibt sich daraus, dass der Druck mit zunehmender Höhe geringer wird (da bei Flüssigkeiten
für die Eintauchtiefe steht, wird der Druck in diesem Fall größer, wenn
größer wird.)

Bei konstanter Temperatur hängt bei Gasen die Dichte

und der Druck
in der Höhe
über
mit der Dichte
und dem Druck
in der Ausgangshöhe
zusammen. Umgeformt gilt also:

Setzt man diesen Ausdruck für

in die vorherige Gleichung ein, erhält man folgenden Ausdruck:

Dividiert man beide Seiten dieser Gleichung durch

, so folgt:

Wertet man die relativen Druckänderung für eine jeweils nur kleine Höhenänderung aus, so kann man alle Änderungen von

bis
aufsummieren; dies entspricht im mathematischen Sinn einem Integral:

Auf der linken Seite wurden die Integralgrenzen gemäß einer Integration durch Substitution umgerechnet. Auf der rechten Seite ist der Term

nicht von der Höhe
abhängig und kann somit als konstanter Faktor vor das Integral gezogen werden:

Das Integral auf der linken Seite kann ebenfalls unmittelbar berechnet werden, wenn man

als Funktion der Höhe auffasst. Auf der linken Gleichungsseite steht damit eine zusammengesetzte Funktion, deren Zähler der Ableitung des Nenners entspricht. Mit der entsprechenden Integrationsmethode folgt:

Mit Hilfe der Rechenregeln für Logarithmen kann der Term auf der linken Seite als

geschrieben werden. Um die resultierende Logarithmus-Gleichung aufzulösen, kann man auf beiden Seiten der Gleichung
mit den jeweigen Termen potenzieren. Wegen
folgt schließlich:

[4] Dieser Druck ist erheblich, wird aber von uns Menschen kaum wahrgenommen, da wir einen gleich großen Druck auch in unseren Lungen haben und daher nicht zusammengepresst werden.
[5] Mit einfachen Wasserstrahlpumpen lässt sich ein Druck von rund
erreichen. Für viele prinzipielle Versuche, beispielsweise Magdeburger Halbkugeln oder Fallröhren reicht dieser Druck bereits aus.

Wie verhält sich der Druck einer abgeschlossenen Gasmenge wenn man das Volumen verringert und die Temperatur dabei konstant ist?

Hält man weiterhin die Temperatur der Gasmenge bei einer Druck- bzw. Volumenänderung konstant, so ergibt sich daraus das Gesetz von Boyle-Mariotte: p⋅V=konstant.

Wie verhalten sich Druck und Volumen zueinander?

Druck und Volumen sind zueinander indirekt proportional. Dieses Gasgesetz wird nach einem englischen und einem französischen Entdecker Gesetz von Boyle und Mariotte genannt.

Ist Druck abhängig vom Volumen?

In Worten ausgedrückt bedeutet das Boyle-Mariotte'sche Gesetz, dass das Volumen einer bestimmten Gasmenge bei konstanter Temperatur umgekehrt proportional dem Druck ist – das Produkt aus Druck und Volumen ist konstant.

Was passiert wenn Gas komprimiert wird?

Die Kompression komprimiert Flüssigkeiten oder Gase. Auf diese Weise wird das Volumen eines Mediums in einem Raum reduziert. So entsteht beispielsweise eine Batterie, in der das Gas unter hohem Druck in der Batterie gespeichert wird. Während der Verdichtung kann die Temperatur des Mediums stark ansteigen oder abfallen.

Toplist

Neuester Beitrag

Stichworte